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Quick Recap:

Imaging Equation

— fj dx - dy . dz - p(x’ y, Z) . e—iZn(kxx+kyy+kZz)

ot ot ot
(1) = A / G, (1)dt', k() =~ / G,(t)dt'. k.(t) =1 / G (1) dt!




Quick Recap:

Imaging Equation
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Image space

Filling up the corresponding 2D/3D k-space to obtain
the image




Quick Recap:

Multidimensional Spatial
Encoding (2D/3D imaging)

__ rfpulse excites the
i entire sample

move to a particular
k, location

N

et
T&

__~form a gradient echo

«—— Mmove to a particular k, location

— move to a particular k, location

sample a set of k, values

[




Quick Recap:

Multidimensional Spatial
Encoding (2D/3D imaging)
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Quick-Recap:




Quick Recap:

Slice Selection

Frequency




Quick Recap:

Slice selection

Slice selection

RF pulse bandwidth
RF center

frequency

Jr--|
Spatial distribution of

froquency with gradient slice select position z

2z, = A2 w3z, ¥G.z, + Af2

Larmor rotating frame frequency




Quick Recap:

2D Imaging sequence




Quick Recap:
2D imaging: acquiring line by line

Typical Gradient
Echolsequence

s

k-space Image space

Total imaging time for a single slice -N, x TR

Sampling of the signal line by line forming the image in
Spatlal frequency domaln Animation Source: Internet




Quick Recap:

Phase encoding order

Ascending Center-out
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repetition period number
repetition period number
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phase encode step index phase encode step index
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Center-in

repetition period number

phase encode step index
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Quick Recap:

Typical Spin Echo sequence
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TE — Echo time

TR\—/Repeat Time




Quick Recap:
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Multi-slice 2D imaging
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Slice interleaved acquisition - Odd/Even
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Larmor rotating frame frequency
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Quick Recap:

3D volumetric imaging

3D GRE - with slab excitation and partition
encoding

Total Imaging time — N, x N, x TR

Slab Excitation and partition encoding in the z direction.




This class - Key points

Properties of Fourier Transform
Sampling of the analog signal
Discrete Fourier Transform

Finite Sampling & Sampling rate




Continuous FT Properties

FT is the bridge between two ‘conjugate’ domains

Linearity

Duality

Spatial Scaling

Space Shifting (shift theorem)
Even/odd symmetry
Convolution

Derivative

Parseval (energy)




Continuous FT Properties

Linearity:

Flaf(x) + bg(x)]=aF(k) + bG(k)

Implications for MRI:

Linear calculation can be done in either k-space or
image domain




Continuous FT Properties

Spatial Scaling:
F[h(ax)]=H(k/a) /|a|

Implications for MRI:

Stretching or shrinking in, say spatial domain,
correspondingly scales the k-variable

It also scales the amplitude of the k-space correspondingly




Continuous FT Properties

Shift Theorem:

Shift in one domain <=> Additional Linear phase in another
e.g. Spylk)->s,(k=k))  => p(x) ->p(x)e? ko
Smlk) -> S, (k) e~2m%0 <= p(x) > p(x — x,)

Implications for MRI:

Motion/displacement of the object will introduce phase error
between k-space lines, introducing artifacts (Chap.23)

A rigid body motion induced phase error can be recovered by
adjusting the phase of corresponding k-space lines

Over coverage in the k-space center is necessary to ensure a
high signal baseline in the image




Phase Aliasing

, Imaginary

? |plecosp  x ¢ = tan_
: real

arctan function




Shift in k-space

One point P(x) -> p(x)et?mkox How many

ints?
5(nAx) -> p(nhx)ei2mmbkonax points”




Continuous FT Properties

Convolution theorem

F(g(x) - h(x)) = G(k) * H(k) = f dk'G (K H (k — k)

Implications for MRI:

Filtering effects can be understood either by
multiplying the filter in image domain or
convoluting with the FT form of the filter in k —
space

Important for understanding finite sampling
(sampling + windowing) effects in DFT




Continuous FT Properties

Conjugate symmetry (partial FT)

Real[ #(f(x))] = Real [#(-f(x))]
Imag[ 7 (f(x))] = - Imag [ #(-f(x))]

Implications for MRI:

Partially collected k-space may still contains all the
information of the object (w/ conditions)

Uncollected k-space can be zero padded, or
estimated based on the collected portion

Example: Partial Fourier Imaging




More Continuous FT Properties

Duality

h(x)gH(k) => H(—x)gh(k)

Derivative Theorem (e.g. edge finding)
F(F(x)=i2rk 7 (x))

Parseval (constant energy)
J_ dxlh(x)|2=f_ dk|H (k)|?




Important FT pairs

Dirac delta function (impulse function)
6(k — kO) = J dx e~ 12m(k=ko)x — g:[eiZHkox]

5(x — xO) — J dk e—i27rk(x—x0) — g:'—l[e—iZEkxo]

Rectangular Function
F [rect (%)] = Wsinc(nWk)

Gaussian

F [e‘”le = ¢ Tk




Signal sampling function

u(k) = Ak Z 5(k — pAk) = Ak z F[ei2mphicx]

p=—® l p=—00

U(x) = u(k) = Ak z e l2mpAkx

I Z%OZ_OO eiZnna — Z??l:—oo S(a _ m)
6(ax) = o(x)/|al

UG = ) 80c—15)

q=-00




Discrete FT (DFT)

Approximation of Continuous FT
More practical for MRI

G(pak) = ) g(qhx)e izratmhk

q=-n

where Ak=1/L and L = 2nAx

Ky




DFT properties

Linearity
Spatial Scaling
Space Shifting (shift theorem)

Even/odd symmetry
Convolution
Derivative

Parseval




Sampling, Aliasing and Image
Reconstruction

MRI signal is the finite, truncated, digitized version of
the continuous signal picked up by the receive coil

Discrete sampling is done using ADC (analog-digital
converter)

The sampling must meet certain criteria in order to
faithfully represent the original continuous signal

Failure in meeting the criteria will lead to artifacts

Physical spin density p(x) of the object is real, while
reconstructed p(x) is practically complex




Infinite sampling

Sampling function:

u(k) = Ak Z 6(k — pAk) k-space X-space

p=—o0 sampling  u(k) U(x)
o function

sampling

Ulx) = Z 6(x —q/Ak) (@) TTT T function T
q=—co
Ak

Sampled signal: X %
5 (K) = s(u(k) sinci(l) | 5K P riangle

function
— Ak 2 s(pAK)S (k — pAk)

p=-o

function

Spin density after DFT Note the

Poo(x) = p(x) * U(x) periodicity

= > pGxr—aq/ak)

q=-o




Aliasing and Nyquist Sampling Criterion

1/Ak = L

If object length (A) >L,
then overlaps in p, (x) will
take place, introducing
aliasing artifacts

To avoid aliasing:
A<L or Ak<1/A




Nyquist in Read direction

AkR — }‘GRAt
AkR — 1/LR BWR :}’LGRLR > :VGRAR
At = T./N = 1/BW,

What we usually do is use T, and GR
but oversampling, i.e. At/2,along Read direction

BWg= yGrLgr = T




Nyquist in Phase Encoding
direction

Akpp = ¥AGpgTpg ) 1 1

Akpp = 1/Lpp ¢ ¥AGppTpp = T <71
AtZTR — 1/BWPE) PE PE

What we usually do in MR is use AGpeTpe

Simply collecting more points along PE direction

using fixed AGPETPE: Corresponding to G, - At

along the read-direction

1) Will not change Lp¢

2) But increase the PE resolution

ALPE=




Finite, discrete sampling

Data truncation I
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Finite sampling and k-space
symmetry

k+Ak/2
w

The question: why rect( ) instead of rect(%)?

Symmetric (a) vs. MRI standard (b)
K-space center (i.e. k=0) and edge not well defined vs. well
defined
For large 2n, image magnitude will be almost the same

A phase shift difference in image phase

——————— InAk————H  ———— InAk——

(a) (b)




Discrete Fourier Transform(DFT)

n-1
s(pAk) = Ax E p(qAx)e~tmpa/n
q=—n

n-—1
p(qAx) = Akz s(pAk)etrra/n

q=-n

Resolution (in voxel size)




Homework

 Prob 11.1 - 11.3, 11.8, 12.2,12.7, 12.8

Next Session

Chapter 13.1-13.3




