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Continuous FT Properties

FT is the bridge between two ‘conjugate’ domains

Linearity

Duality

Spatial Scaling

Space Shifting (shift theorem)
Even/odd symmetry
Convolution

Derivative

Parseval (energy)




Continuous FT Properties

Convolution theorem

F(g(x) - h(x)) = G(k) * H(k) = f dk'G (K H (k — k)

Implications for MRI:

Filtering effects can be understood either by
multiplying the filter in image domain or
convoluting with the FT form of the filter in k —
space

Important for understanding finite sampling
(sampling + windowing) effects in DFT




Continuous FT Properties

Shift Theorem:

Shift in one domain <=> Additional Linear phase in another
e.g. Spylk)->s,(k=k))  => p(x) ->p(x)e? ko
Smlk) -> S, (k) e~2m%0 <= p(x) > p(x — x,)

Implications for MRI:

Motion/displacement of the object will introduce phase error
between k-space lines, introducing artifacts (Chap.23)

A rigid body motion induced phase error can be recovered by
adjusting the phase of corresponding k-space lines

Over coverage in the k-space center is necessary to ensure a
high signal baseline in the image




Shift in k-space

One point P(x) -> p(x)et?mkox How many

ints?
5(nAx) -> p(nhx)ei2mmbkonax points”




Images source: Wikipedia.org

Phase Aliasing

Imaginary

= tan2~!
¢ an real

arctan2 function

atan(y, x} = <

Takes into consideration
the sign of the individual
real and imaginary parts
to place the vector in the
right quandrant




Signal sampling function

u(k) = Ak Z 5(k — pAk) = Ak z F[ei2mphicx]

p=—® l p=—00

U(x) = u(k) = Ak z e l2mpAkx

I Z%OZ_OO eiZnna — Z??l:—oo S(a _ m)
6(ax) = o(x)/|al

UG = ) 80c—15)

q=-00




Infinite sampling

Sampling function:

u(k) = Ak Z 6(k — pAk) k-space X-space

p=—o0 sampling  u(k) U(x)
o function

sampling

Ulx) = Z 6(x —q/Ak) (@) TTT T function T
q=—co
Ak

Sampled signal: X %
5 (K) = s(u(k) sinci(l) | 5K P riangle

function
— Ak 2 s(pAK)S (k — pAk)

p=-o

function

Spin density after DFT Note the

Poo(x) = p(x) * U(x) periodicity

= > pGxr—aq/ak)

q=-o




Aliasing and Nyquist Sampling Criterion

1/Ak = L

If object length (A) >L,
then overlaps in p, (x) will
take place, introducing
aliasing artifacts

To avoid aliasing:
A<L pr Ak<1/A




Nyquist in Read & Phase
encoding directions

AkR — }‘GRAt

AkR — 1/LR BWR :}’LGRLR > :VGRAR
At = T./N = 1/BW,

Akpp = ¥AGpgTpg )
Akpp = 1/LPE




Finite, discrete sampling

Data truncation R ey

k+Ak/2
W

TUM T
Sy = S(k) -u(k) - rect(

W
v

p(x) = p(x) * U(x) *




Discrete Fourier Transform(DFT)

n—-1
s(pAk) = Ax E p(qAx)e~trpa/mn
q=—n

n-—1
p(qAx) = Ak 2 s(pAk)etrra/n

q=-n

Resolution (in voxel size)




This class - Key points

Filtering effects
Effective voxel size

Spin echo and gradient echo envelope
— filtering affects




FT image reconstruction

Spatial encoded signal and spin density

s(ky, ky, kz) = ﬂf dxdydz p(x,y, z)e 2T kxx+kyy+ks2)

Continuous: |
p(x,y,z) = j J j dk.dkdk, s(k,, k,, k)e!2m(xx+kyy +icz2)

Infinite discrete Poo(X) = Akz i s(pAk)ei2mpikx
sampling: p==

n—1
Finite discrete p,,(x) = Ak 2 s(pAk)et?mphkx

. ) p=—n
sampling: W= A

Ideal voxel size:




Filters and Point Spread Function (PSF)

Filter: H(k) multiplies with k-space
PSF: iIFT of H(k), i.e. h(r), convolve with the image

According to Convolution Theorem:
Su(K) = S(k)Hy(K) ‘Hy(K) ... =>  py(X)=p(X)*hy(x)*hy(X)...

Examples of filter:
K-space truncation (HP filter)
Discrete sampling (mild LP filter)
T2/T2' relaxation (LP filter)




Gibbs Rin

Note the
coherent
addition of
the ringing




Gibbs Ringing

Discontinuity in the object

f) =fe )+ (F(07) - f(07)6(x)

Symmetric sampling window on k-space

H)™ (k) = rect(k/W) => h,)" (x) = Wsinc(mWx)

Reconstructed image

fx) = fQ) * hy™ (%)




Gibbs Ringing: oscillation amplitude limit

fG) = £ * hy)™ ()

For fixed FOV and N — oo, one has:
1

W=—
Ax—)OO

The limit of f(x) is:

IAl/ig})o f(x) =f. (x)ml/iinoo f—ooh‘i’ym(x — x’)dX’ +(f(oh) _f(()‘))ml/iinoo leoh‘fvym(x — x’)dxr
= fc (x) + (f(0+) — f(O_)) lim foj hY™ (x — x)dx’

W—-oo

1 1
= fc(x) + (F(07) = £(07)) lim (= +—Si(nWx))
W —oo 2 T

The largest oscillation takes place at Ax, so that
Si(nWAx) = Si(m) = 1.8519
thus
Jim f(Ax) = f(Ax) + 0.09(f(0%) = £(07))




Gibbs Ringing: oscillation
frequency

f) = fx) * hy)™(x)
= f(x) * Wsinc(nWx)

= f(x) * Wsinc (Z—i)
= f(x) * Wsinc(qm)

Spatial frequency of the Gibbs Ringing
depends only on pixel size Ax

Higher resolution -> smaller pixels ->
denser Gibbs Ringing but slightly greater
signal variation




Gibbs Ringing

Takes place at step discontinuities

Oscillating over- and under-shoots, with constant
amplitude limit
Jim [5(xy) = p (x3)| = 0.091p (x3) — p (x9)

Oscillating frequency (spatial) depends only on
pixel number away from the discontinuity




Gibbs Ringing: reduction

Properties of Gibbs Ringing
Proportional to the signal difference at the
discontinuity
Ringing variation in amplitude and frequency is a
function of pixel number
Over- and under-shoot alternates by every other pixel

The less sharper the discontinuity, the less obvious
the Gibbs Ringing

Gibbs Ringing reduction

LP filter (e.g. Hanning, Hamming, Gaussian) to smooth
out the image




Spatial Resolution in MRI

Definition
The smallest resolvable distance between two different
objects/features

PSF (if known) can be used to quantify resolution limit
Ideal case: PSF = delta function




PSF and spatial resolution

Spatial resolution of PSF (continuous filter)

H ti11er(0)
Wi = | dxhpueriy = L
Jitter hfllteT(O) filter hfllter(O)

Spatial resolution of discrete, windowed, sampled MR
signal

Ax : = dx hy ri
MRI filter Ry iterO) j_ L ws,filter (X)

l w/o additional filter

e dx h
hws(O) f ws(x) —

AxMRI,ws =
Conditions:
Hsor IS Symmetric

Hsiter(0) = Hijpie,(k#0)




K-space coverage and spatial resolution

(fixed L)

2nAk
-> Ax |
-> Gibbs Ringingl
-> SNR 1




Quick Recap:

Phase encoding order

Center-out




Quick Recap:

Phase encoding order

Center-out

o
-6 -12 -8 -4 0 4 8 12 16
phase encode step index

Center-in

8 4
phase encode step index




Information content in k-space

K-space center: low spatial frequency components
K-space edge : high spatial frequency components

2x1 pixels ~ 2x1 pixels

uniform 1 pixel  2x2 pixels center Arbitrary

K-space Mag




K-space Mag

Information
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Information content in k-space

K-space phase

Image K-space Mag K-space Phase
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Other measures of resolution

First zero crossing of the filter h(x), e.g. Sinc




Filtering due to T2 and T2* decay

Posing an intrinsic resolution limit for MR images

Depend on sequence and scanning parameters in
a complicated way (Chap. 15)




Filtering due to T2 and T2* decay

Along Read direction
k

_}l_G+ TE

: k
Hy,(sym),3 (k)=e "2 Rect(:)

et

|4

hw(sym),TZ* (x) = Eq (13-54’)

When in effect?
Long RO relative to T2 or T2*

Pros and Cons

Limit the effective resolution, even blur the
image
Reduce Gibbs ringing




T2* filtering affect
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T2’ filtering affect

Hspr,(k)Hsg (k)

(.} _TE I,."rllTQ (\_JIL Il,-"lll/.i::. (__}TTE (.} - ||L: ll,-"fr!*:r- (__;T_';

)~ _T"
l‘f‘—l; ( T}I’L

/LS‘E.’I;(J') -

FWHMsr = FWHMgg T T FWHN [5;;_]'":3




Homework

e Prob 13.1,13.5, 13.7, 13.8

Next Session

Review




