BME- 7710 - Magnetic Resonance Imaging

Chapter 13 – Filtering effects

Jaladhar Neelavalli, Ph.D. Assistant Professor, WSU SOM - Dept. of Radiology

Continuous FT Properties

FT is the bridge between two 'conjugate' domains

- Linearity
- Duality
- Spatial Scaling
- Space Shifting (shift theorem)
- Even/odd symmetry
- Convolution
- Derivative
- Parseval (energy)

Continuous FT Properties

Convolution theorem

$$\mathcal{F}(g(x) \cdot h(x)) = G(k) * H(k) = \int dk' G(k') H(k - k')$$

Implications for MRI:

- Filtering effects can be understood either by multiplying the filter in image domain or convoluting with the FT form of the filter in k-space
- Important for understanding finite sampling (sampling + windowing) effects in DFT

Continuous FT Properties

Shift Theorem:

Shift in one domain <=> Additional Linear phase in another

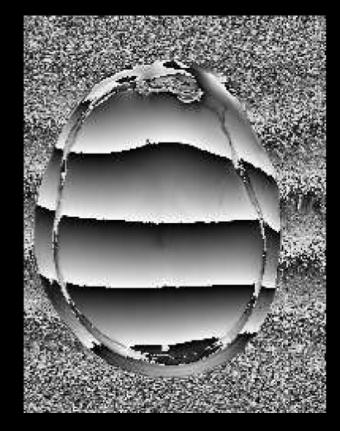
e.g.
$$s_m(k) -> s_m(k - k_0) => \hat{\rho}(x) -> \hat{\rho}(x)e^{i2\pi k_0 x}$$

 $s_m(k) -> s_m(k) e^{-i2\pi k x_0} <= \hat{\rho}(x) -> \hat{\rho}(x - x_0)$

Implications for MRI:

- Motion/displacement of the object will introduce phase error between k-space lines, introducing artifacts (Chap.23)
- A rigid body motion induced phase error can be recovered by adjusting the phase of corresponding k-space lines
- Over coverage in the k-space center is necessary to ensure a high signal baseline in the image

Shift in k-space



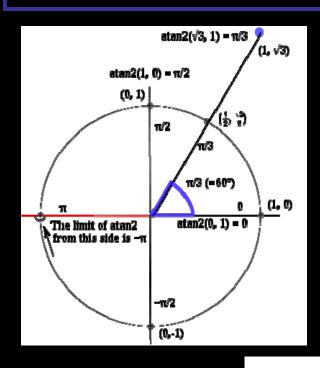
One point

$$\hat{\rho}(x) \rightarrow \hat{\rho}(x)e^{i2\pi k_0 x}$$

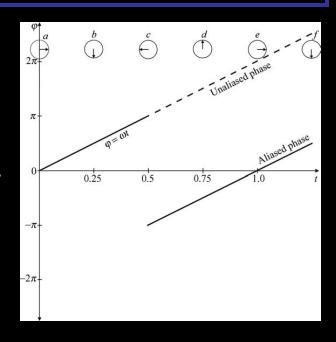
 $\hat{\rho}(n\Delta x) \rightarrow \hat{\rho}(n\Delta x) e^{i2\pi \cdot m\Delta k_0 \cdot n\Delta x}$

How many points?

Phase Aliasing



$$\phi = \tan^{2-1} \frac{Imaginary}{real}$$



arctan2 function

$$\operatorname{atan2}(y,x) = \begin{cases} \arctan \frac{y}{x} & x > 0 \\ \arctan \frac{y}{x} + \pi & y \geq 0, x < 0 \\ \arctan \frac{y}{x} - \pi & y < 0, x < 0 \\ + \frac{y}{2} & y > 0, x = 0 \\ -\frac{y}{2} & y < 0, x = 0 \\ \operatorname{undefined} & y = 0, x = 0 \end{cases}$$

Takes into consideration the sign of the individual real and imaginary parts to place the vector in the right quandrant

Images source: Wikipedia.org

Signal sampling function

$$u(k) = \Delta k \sum_{p=-\infty}^{\infty} \delta(k - p\Delta k) = \Delta k \sum_{p=-\infty}^{\infty} \mathcal{F}[e^{i2\pi p\Delta kx}]$$

$$U(x) = \mathcal{F}^{-1}[u(k)] = \Delta k \sum_{p=-\infty}^{\infty} e^{i2\pi p\Delta kx}$$

$$\sum_{n=-\infty}^{\infty} e^{i2\pi na} = \sum_{m=-\infty}^{\infty} \delta(a - m)$$

$$\delta(ax) = \delta(x)/|a|$$

$$U(x) = \sum_{q=-\infty}^{\infty} \delta(x - \frac{q}{\Delta k})$$

Infinite sampling

Sampling function:

$$u(k) = \Delta k \sum_{p=-\infty}^{\infty} \delta(k - p\Delta k)$$
$$U(x) = \sum_{q=-\infty}^{\infty} \delta(x - q/\Delta k)$$

Sampled signal:

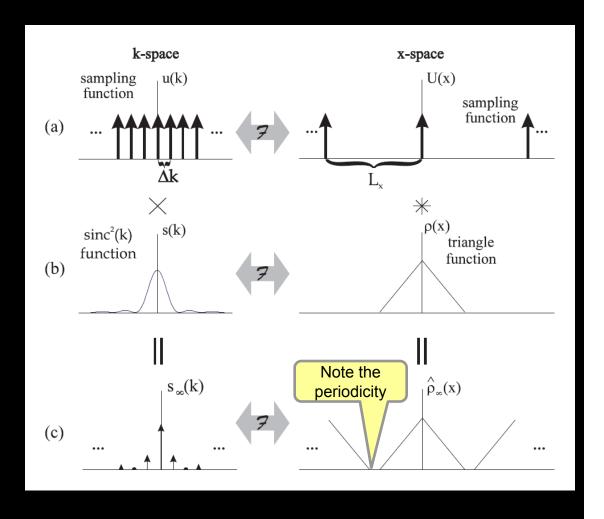
$$s_{\infty}(k) \equiv s(k)u(k)$$

= $\Delta k \sum_{p=-\infty}^{\infty} s(p\Delta k)\delta(k-p\Delta k)$

Spin density after DFT

$$\hat{\rho}_{\infty}(x) = \rho(x) * U(x)$$

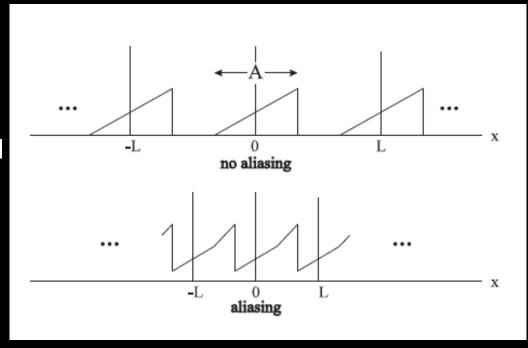
$$= \sum_{q=-\infty}^{\infty} \rho(x - q/\Delta k)$$

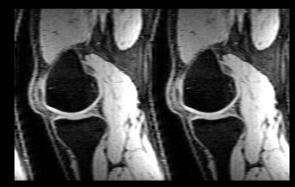


Aliasing and Nyquist Sampling Criterion

- 1/∆k = L
- If object length (A) >L, then overlaps in $\hat{\rho}_{\infty}(x)$ will take place, introducing aliasing artifacts
- To avoid aliasing:A<L or ∆k<1/A

Nyquist Sampling Criterion for MRI





Nyquist in Read & Phase encoding directions

$$\Delta k_R = \psi G_R \Delta t$$
 $\Delta k_R = 1/L_R$
 $\Delta t = T_S/N = 1/BW_R$
 $BW_R = \psi G_R L_R > \psi G_R A_R$

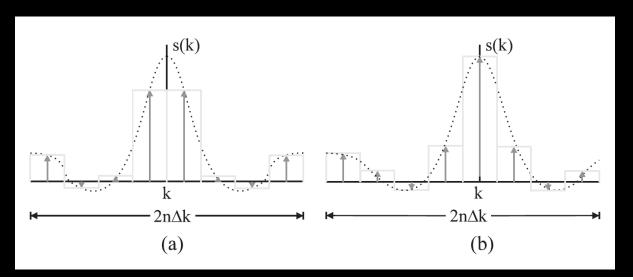
$$egin{aligned} \Delta k_{PE} &=
egthindrightarrow \Delta G_{PE} au_{PE} \ \Delta k_{PE} &= 1/L_{PE} \ \Delta t &= TR = 1/BW_{PE} \ \end{pmatrix} \quad
egthindrightarrow \Delta G_{PE} au_{PE} = rac{1}{L_{PE}} < rac{1}{A_{PE}} \end{aligned}$$

Finite, discrete sampling

Data truncation

$$s_{m(k)} = s(k) \cdot u(k) \cdot rect(\frac{k + \Delta k/2}{W})$$

 $\hat{\rho}(x) = \rho(x) * U(x) * W sinc(\pi W x) e^{-i\pi x \Delta k}$



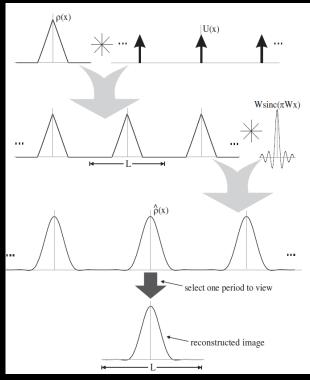


Fig. 12.6

Discrete Fourier Transform(DFT)

$$s(p\Delta k) = \Delta x \sum_{q=-n}^{n-1} \hat{p}(q\Delta x)e^{-i\pi pq/n}$$
$$\hat{p}(q\Delta x) = \Delta k \sum_{q=-n}^{n-1} s(p\Delta k)e^{i\pi pq/n}$$

Resolution (in voxel size)

$$\Delta L_{RO} = rac{BW_R}{N_R \gamma G_R}$$
 $\Delta L_{PE} = rac{BW_R}{N_P \gamma \Delta G_{PE} au_{PE}}$

This class - Key points

- Filtering effects
- Effective voxel size
- Spin echo and gradient echo envelope
 - filtering affects

FT image reconstruction

Spatial encoded signal and spin density

$$s(k_x, ky, kz) = \iiint dx dy dz \, \rho(x, y, z) e^{-i2\pi(k_x x + k_y y + k_z z)}$$

Continuous:

$$\rho(x,y,z) = \iiint dk_x dk_y dk_z \, s(k_x,k_y,k_z) e^{i2\pi(k_x x + k_y y + k_z z)}$$

Infinite discrete sampling:

$$\hat{\rho}_{\infty}(x) = \Delta k \sum_{p=-\infty}^{\infty} s(p\Delta k) e^{i2\pi p\Delta kx}$$

Finite discrete sampling:

$$\hat{
ho}_w(x) = \Delta k \sum_{p=-n}^{n-1} s(p\Delta k) e^{i2\pi p\Delta kx}$$

$$= \hat{
ho}_{\infty}(x) * Wsinc(\pi W x) e^{-i\pi x\Delta k} (W = N\Delta k)$$

Ideal voxel size:

$$\Delta x = \frac{L}{N} = \frac{1}{N \wedge k} = \frac{1}{W}$$

Filters and Point Spread Function (PSF)

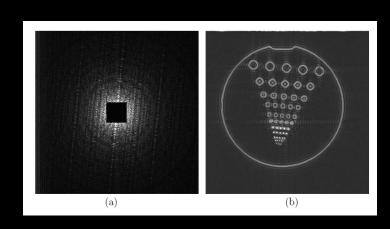
Filter: H(k) multiplies with k-space

PSF: iFT of H(k), i.e. h(r), convolve with the image

According to Convolution Theorem:

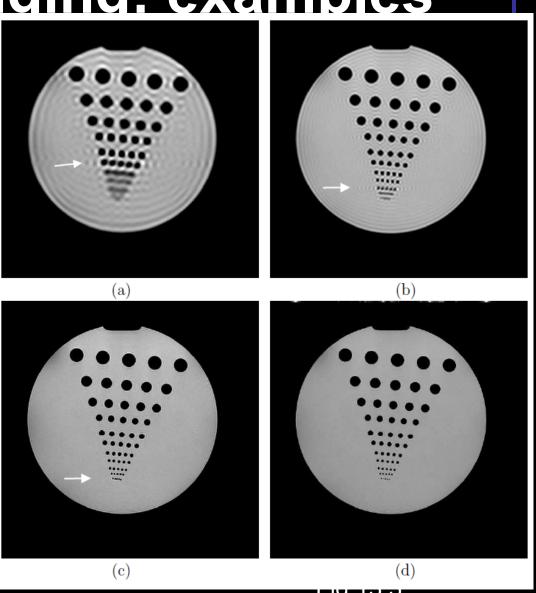
$$s_{H}(k) = s(k) \cdot H_{1}(k) \cdot H_{2}(k) \cdot \dots - \rho_{H}(x) = \rho(x) \cdot h_{1}(x) \cdot h_{2}(x) \cdot \dots$$

- Examples of filter:
 - K-space truncation (HP filter)
 - Discrete sampling (mild LP filter)
 - T2/T2' relaxation (LP filter)



Gibbs Ringing: examples

 Note the coherent addition of the ringing



Gibbs Ringing

Discontinuity in the object

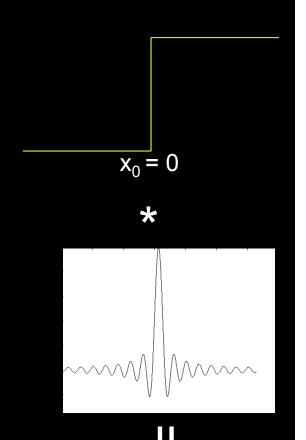
$$f(x) = fc(x) + (f(0^+) - f(0^-))\Theta(x)$$

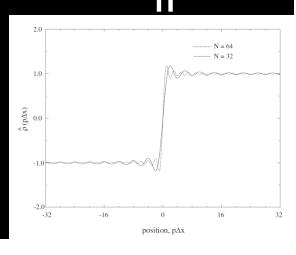
Symmetric sampling window on k-space

$$H_W^{sym}(k) = rect(k/W) \Longrightarrow h_W^{sym}(x) = Wsinc(\pi W x)$$

Reconstructed image

$$\hat{f}(x) = f(x) * h_w^{sym}(x)$$





Gibbs Ringing: oscillation amplitude limit

$$\hat{f}(x) = f(x) * h_w^{sym}(x)$$

• For fixed FOV and $N \to \infty$, one has:

$$W = \frac{1}{\Delta x} \to \infty$$

• The limit of $\hat{f}(x)$ is:

$$\lim_{W \to \infty} \hat{f}(x) = f_{c}(x) \lim_{W \to \infty} \int_{-\infty}^{\infty} h_{w}^{sym}(x - x') dx' + (f(0^{+}) - f(0^{-})) \lim_{W \to \infty} \int_{x'=0}^{\infty} h_{w}^{sym}(x - x') dx'$$

$$= f_{c}(x) + (f(0^{+}) - f(0^{-})) \lim_{W \to \infty} \int_{x_{0}=0}^{\infty} h_{w}^{sym}(x - x') dx'$$

$$= f_{c}(x) + (f(0^{+}) - f(0^{-})) \lim_{W \to \infty} (\frac{1}{2} + \frac{1}{\pi} Si(\pi W x))$$

• The largest oscillation takes place at Δx , so that

$$Si(\pi W \Delta x) = Si(\pi) \cong 1.8519$$
thus
$$\lim_{W \to \infty} \hat{f}(\Delta x) \cong f(\Delta x) + 0.09(f(0^+) - f(0^-))$$

Gibbs Ringing: oscillation frequency

$$\hat{f}(x) = f(x) * h_w^{sym}(x)$$

$$= f(x) * Wsinc(\pi W x)$$

$$= f(x) * Wsinc(\frac{\pi x}{\Delta x})$$

$$= f(x) * Wsinc(q\pi)$$

- Spatial frequency of the Gibbs Ringing depends only on pixel size ∆x
- Higher resolution -> smaller pixels -> denser Gibbs Ringing but slightly greater signal variation

Gibbs Ringing

- Takes place at step discontinuities
- Oscillating over- and under-shoots, with constant amplitude limit

$$\lim_{N \to \infty} \left| \hat{\rho} \left(x_0^{\pm} \right) - \rho \left(x_0^{\pm} \right) \right| \approx 0.09 \left| \rho \left(x_0^{+} \right) - \rho \left(x_0^{-} \right) \right|$$

 Oscillating frequency (spatial) depends only on pixel number away from the discontinuity

Gibbs Ringing: reduction

Properties of Gibbs Ringing

- Proportional to the signal difference at the discontinuity
- Ringing variation in amplitude and frequency is a function of pixel number
- Over- and under-shoot alternates by every other pixel
- The less sharper the discontinuity, the less obvious the Gibbs Ringing

Gibbs Ringing reduction

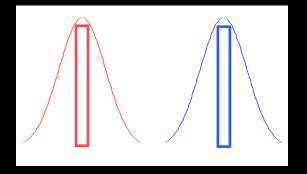
 LP filter (e.g. Hanning, Hamming, Gaussian) to smooth out the image

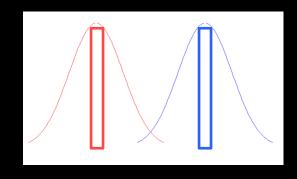
Spatial Resolution in MRI

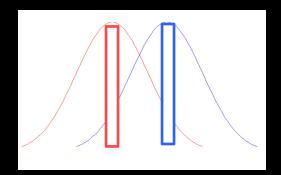
Definition

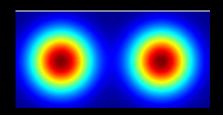
The smallest resolvable distance between two different objects/features

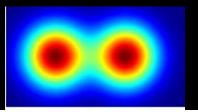
PSF (if known) can be used to quantify resolution limit
 Ideal case: PSF = delta function

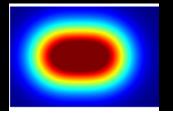












PSF and spatial resolution

Spatial resolution of PSF (continuous filter)

$$\Delta x_{filter} \equiv \frac{1}{h_{filter(0)}} \int_{-\infty}^{\infty} dx h_{filter(x)} = \frac{H_{filter(0)}}{h_{filter(0)}}$$

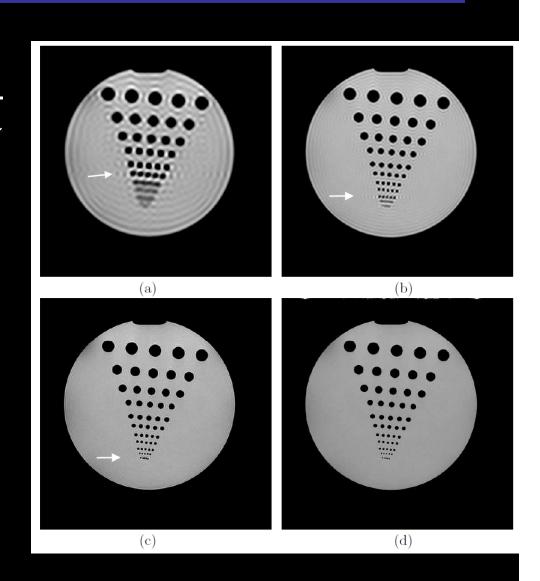
Spatial resolution of discrete, windowed, sampled MR signal

- Conditions:
 - H_{filter} is symmetric
 - $-H_{filter}(0) \ge H_{filter}(k \ne 0)$

K-space coverage and spatial resolution

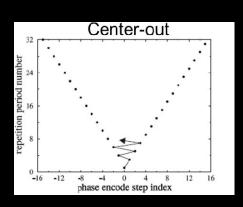
$$\frac{1}{2n\Delta k} = \frac{1}{W} = \Delta x = \frac{L}{2n}$$

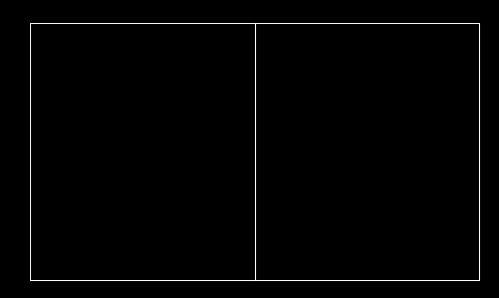
- (fixed L) 2n∆k
 - -> ∆x ↓
 - -> Gibbs Ringing↓
 - -> SNR ↑



Quick Recap:

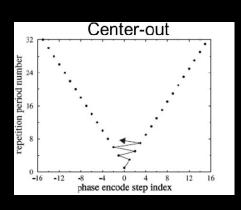
Phase encoding order

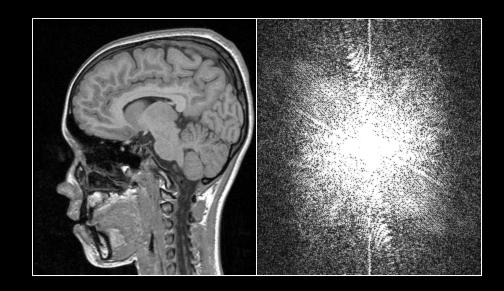


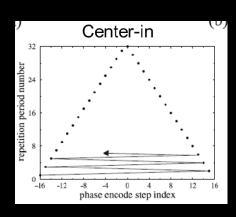


Quick Recap:

Phase encoding order

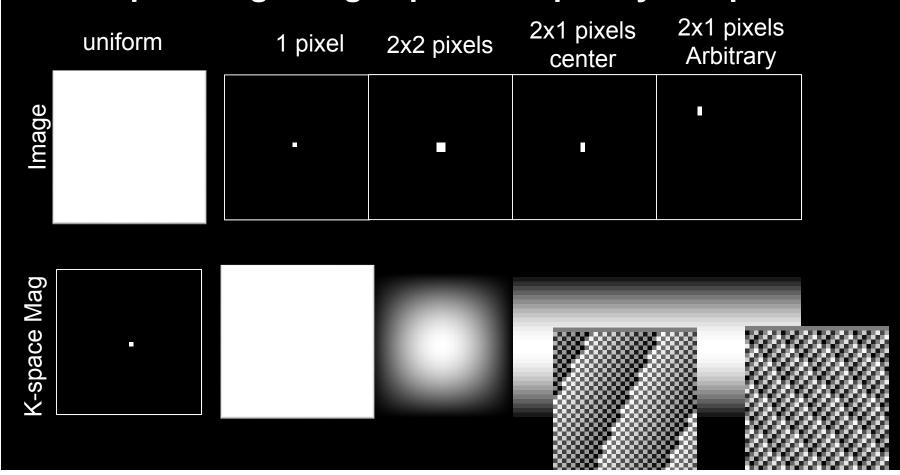




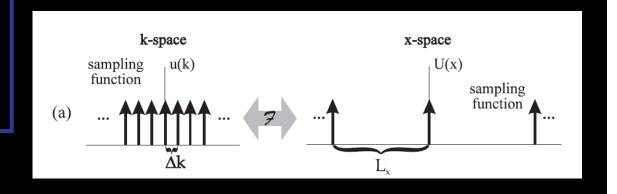


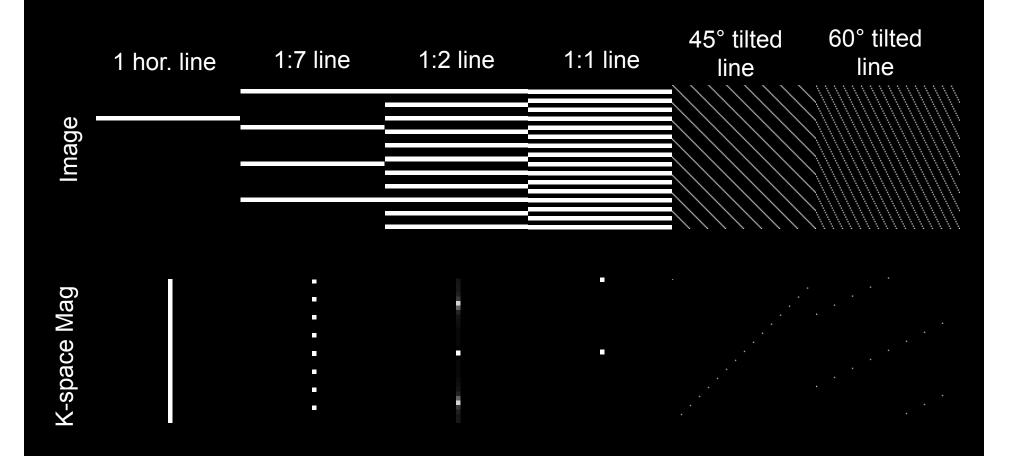
Information content in k-space

- K-space center: low spatial frequency components
- K-space edge: high spatial frequency components



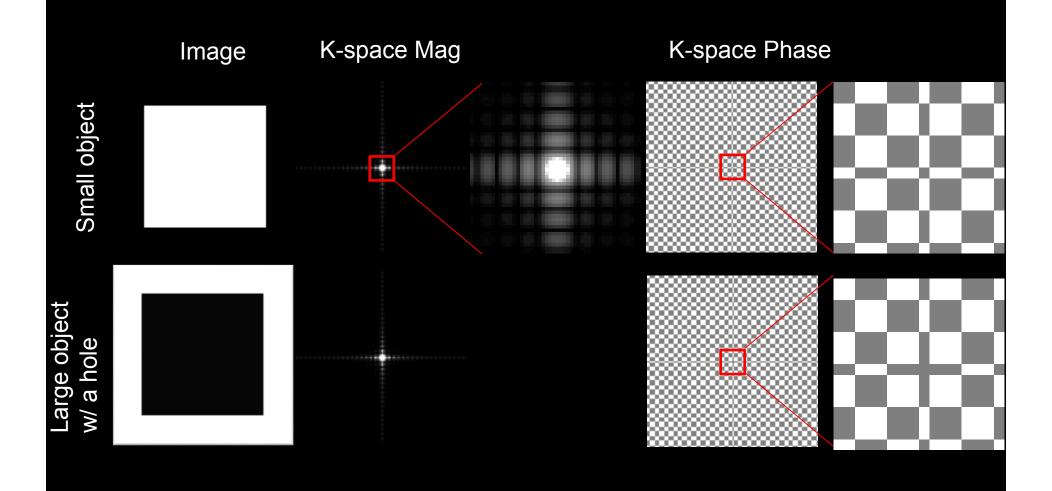
Information content in k-space





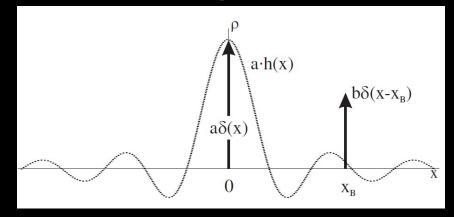
Information content in k-space

K-space phase

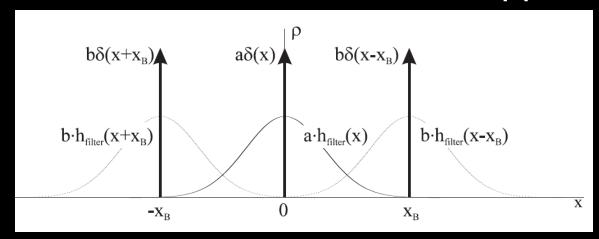


Other measures of resolution

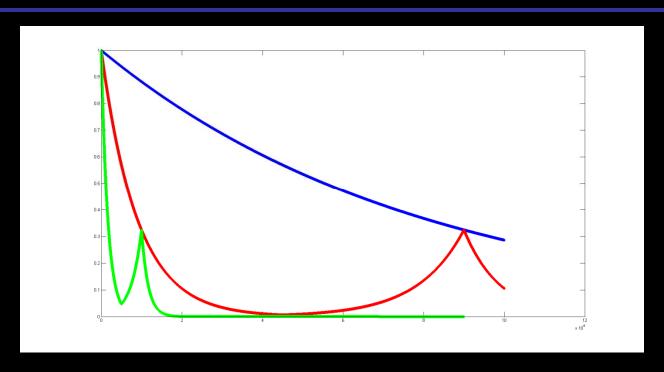
First zero crossing of the filter h(x), e.g. Sinc



Full Width Half/Tenth Maximum approximation



Filtering due to T2 and T2* decay



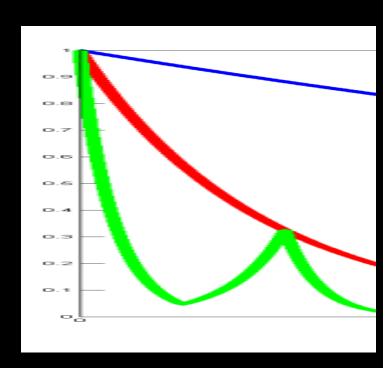
- Posing an intrinsic resolution limit for MR images
- Depend on sequence and scanning parameters in a complicated way (Chap. 15)

Filtering due to T2 and T2* decay

Along Read direction

$$H_{W(sym),T_2^*}(k)=e^{-rac{k}{\gamma G}+TE\over T_2^*}Rect(rac{k}{W})$$
 iFT is Lorentzian function
$$h_{W(sym),T_2^*}(x)=Eq~(13.54)$$

- When in effect?
 - Long RO relative to T2 or T2*
- Pros and Cons
 - Limit the effective resolution, even blur the image
 - Reduce Gibbs ringing

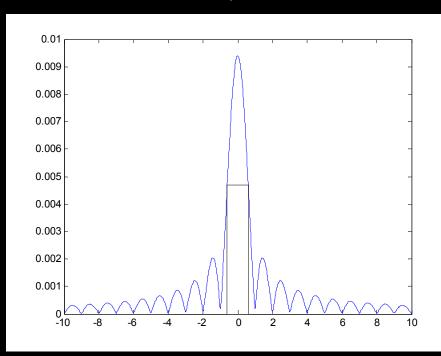


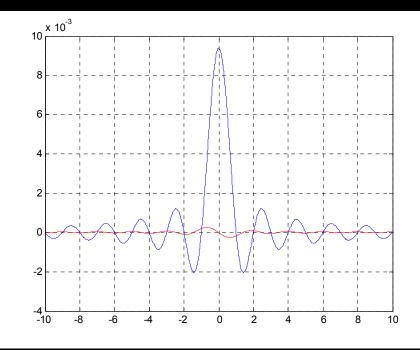
T2* filtering affect

$$h_{w,T_2^*}(x) = e^{-\frac{TE}{T_2^*}} \cdot \frac{e^{\frac{T_S}{2T_2^*} - \frac{i\pi x}{\Delta x}} - e^{\frac{-T_S}{2T_2^*} + \frac{i\pi x}{\Delta x}}}{\frac{T_S \Delta x}{T_2^*} - i2\pi x}$$

$$\frac{T_S}{T_2^*} = 1/8$$

Filter Amplitude



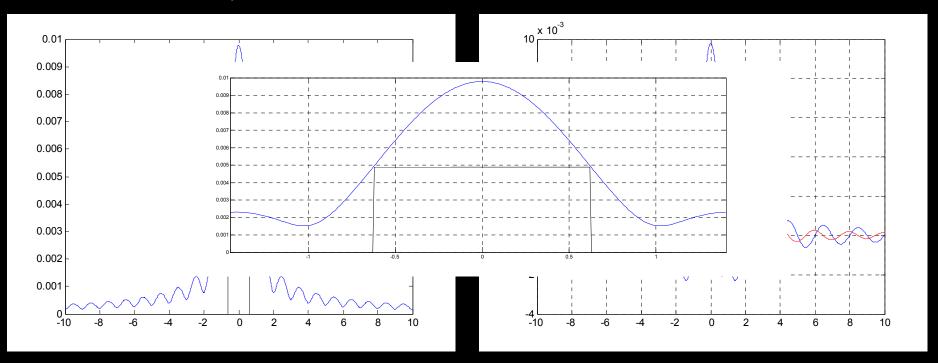


T2* filtering affect

$$h_{w,T_2^*}(x) = e^{-\frac{TE}{T_2^*}} \cdot \frac{e^{\frac{T_s}{2T_2^*} - \frac{i\pi x}{\Delta x}} - e^{\frac{-T_s}{2T_2^*} + \frac{i\pi x}{\Delta x}}}{\frac{T_s \Delta x}{T_2^*} - i2\pi x}$$

$$\frac{T_s}{T_2^*} = 1$$

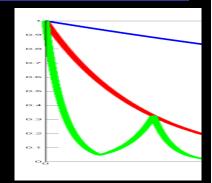
Filter Amplitude



T2' filtering affect

$$H_{SE}(k) = H_{SE,T_2}(k)H_{SE,T_2'}(k)$$

= $e^{-T_E/T_2}e^{-k/\gamma GT_2}e^{-|k|/\gamma GT_2'}$



$$H_{w,SE,T_2'}(k) = e^{-|k|/(\gamma G T_2')} \operatorname{rect}\left(\frac{k + \Delta k/2}{W}\right)$$

$$h_{SE,T_2'}(x) = \frac{2\gamma G T_2'}{1 + 4\pi^2 \gamma^2 G^2 T_2'^2 x^2}$$

 $FWHM_{SE} = FWHM_{SE,T_2} + FWHM_{SE,T_2'}$

Homework

• Prob 13.1,13.5, 13.7, 13.8

Next Session

Review