Chapter 15 – Signal, Contrast and Noise

Jaladhar Neelavalli, Ph.D. Assistant Professor, WSU SOM - Dept. of Radiology

This class - Key points

- Noise (signal to noise ratio) -> relation to experimental parameters
- SNR in magnitude and phase domain
- Contrast, its optimization
- Partial voluming
- Affect of common exogenous contrast agents

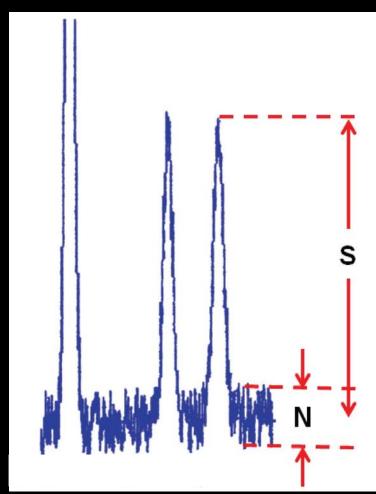
Noise

Any physical measurement using an instrument/sensor has noise and it is our ability to detect the signal above the noise that characterizes a successful measurement

A measure of a successful experiment is the ratio

Signal
Noise standard deviation

$$\mathsf{SNR} = \frac{S}{\sigma_0}$$



Intro

- Noise is practically inevitable
 - Random / systematic
 - Physiological
- Signal-to-noise ratio (SNR) determines the effectiveness of the imaging
- SNR affects CNR, which determines the usefulness of the image
- Good CNR requires good SNR, but good SNR not necessary means good CNR

Signal and noise

 Consider equilibrium magnetization and receive coil field

$$s \equiv \hat{\rho}_{m} \propto \omega_{0} M_{0} \mathcal{B}_{\perp} V_{voxel}$$

$$\propto \gamma B_{0} \rho_{0} \frac{\gamma^{2} h^{2}}{4kT} B_{0} \mathcal{B}_{\perp} V_{voxel}$$

$$\propto \frac{B_{0}^{2} V_{voxel}}{T} \rho_{0} \mathcal{B}_{\perp}$$

- Many factors being ignored or constant here
 - T1, T2, T2*
 - RF field: flip angle, B1 field homogeneity
 - Sequence type, TE/TR/TI/...

Signal and noise

 Revisiting the measured signal 1D:

$$\hat{\rho}_{m}(q\Delta x) = \frac{1}{N} \sum_{p=-\frac{N}{2}}^{\frac{N}{2}-1} s(p\Delta k) e^{i2\pi pq/N}$$
$$= \Delta x \sum_{q=-\frac{N}{2}}^{\frac{N}{2}-1} \hat{\rho}(q\Delta x) \delta(x - q\Delta x)$$

3D:

$$\hat{\rho}_{m}(p\Delta x, q\Delta y, r\Delta z) = \frac{1}{N_{x}N_{y}N_{z}} \sum_{p',q',r'} s(p'\Delta k_{x}, q'\Delta k_{y}, r'\Delta k_{z}) e^{i2\pi(\frac{pp'}{N_{x}} + \frac{qq'}{N_{y}} + \frac{rr'}{N_{z}})}$$
Voxel Volume

$$= \Delta x \Delta y \Delta z \sum_{p,q,r} \hat{\rho}(p\Delta x, q\Delta y, r\Delta z) \delta(x - p\Delta x) \delta(y - q\Delta y) \delta(z - r\Delta z)$$

Signal and noise

Noise in MRI

- Thermal noise (body/object, coil, electronics)
- Systematic noise (scanner, AC power, etc)
- Physiological noise (heartbeat, respiration, etc)

Thermal noise estimation

$$\sigma_{thermal}^{2} = \sigma_{body}^{2} + \sigma_{coil}^{2} + \sigma_{electronics}^{2}$$

$$\propto 4kT \cdot R \cdot BW_{coil}$$

$$R_{eff} = R_{body} + R_{coil} + R_{electronics}$$
 $BW_{coil} \equiv BW_{readout}$: bandwidth of reception

Note that this is noise in k-space domain – What is relevant for us is the noise in image domain

$$s_m(k) = s(k) + \epsilon(k)$$

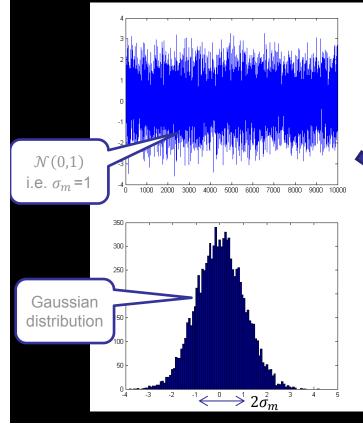
For thermal (or white/Gaussian) noise

Autocorrelation: $R_{\epsilon}(\tau) \equiv \overline{\epsilon(k_p)\epsilon^*(k_q)}|_{\tau \equiv (k_p - k_q)} = \sigma_m^2 \delta(\tau)$

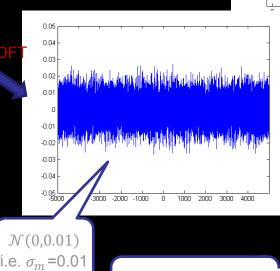
Spectral density: $r_{\eta}(f) \equiv \mathcal{F}[R_{\epsilon}(\tau)] = \sigma_m^2$

Fourier Transform of noise: $\mathcal{F}[\epsilon(k)] = \eta(x)$

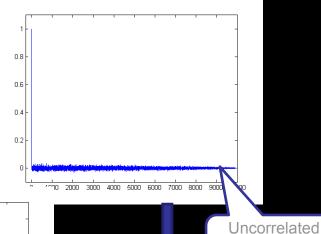
 ϵ (k), N=10000



Autocorrelation



Spectral density mean equals σ_m^2 in $\epsilon(\mathbf{k})$



DFT

5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

between any two

points in $\epsilon(k)$

Noise vs. Imaging parameters

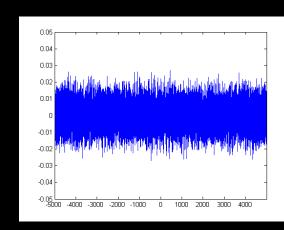
Noise in MR image

$$\eta(p\Delta x) = iDFT[\epsilon(k)] = \frac{1}{N} \sum_{p'} \epsilon(p'\Delta k) e^{i2\pi p'\Delta kp\Delta x}$$

Properties of noise in image

$$mean(\eta(p\Delta x)) = iDFT[\overline{\epsilon(k)}] = 0$$

$$var(\eta(p\Delta x)) \equiv DFT[R_{\epsilon}(\tau)] = \frac{\sigma_m^2}{N}$$



- Implications
 - White noise in k-space results in white noise in image
 - Noise variance (std) in image is N (\sqrt{N}) times smaller than in k-space

Improving SNR

Averaging over multiple repeated acquisitions

$$s_{m,ave}(k) = \frac{1}{N_{acq}} \sum_{i} s_{m,i} (k) = s_{m}(k)$$

$$\sigma_{m,ave} = \sqrt{\frac{\sum_{i} \sigma_{m,i}^{2}}{N_{acq}}} = \frac{\sigma_{m}}{\sqrt{N_{acq}}}$$

Thus

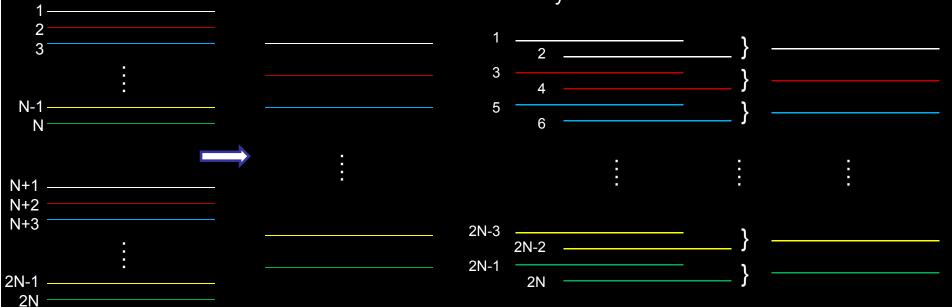
$$SNR_{m,ave} = \sqrt{N_{acq}}SNR_m$$

- Properties
 - True for both k-space and images
 - Valid only when noise are uncorrelated between acquisitions, systematic noise such as artifacts will not be reduced

Improving SNR: Multiple averages

Improving SNR

- Averaging can be done over images or k-space
- Two modes for averaging over k_v



Long term ave

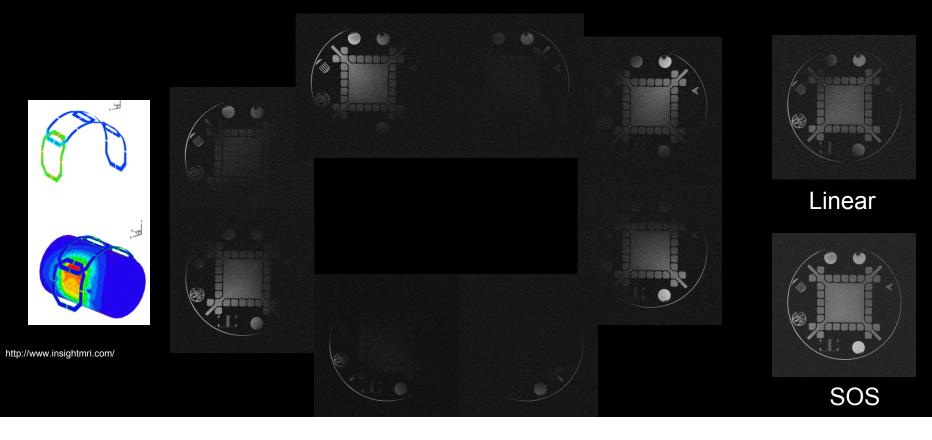
$$\sigma_{0,avg} = \frac{\sigma_0}{\sqrt{N_{acg}}}$$

Short term ave

$$SNR_{ave} = \sqrt{N_{acq}} \cdot SNR$$

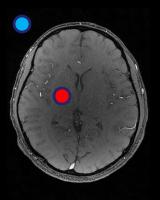
Improving SNR

- Use multiple smaller surface coils (phased array coils)
 - Smaller coil -> less coupling -> less noise
 - Rapidly weakening receive fields ${\mathcal B}$ with distance
 - Sum-of-square offers optimal results over linear combination



Measuring SNR

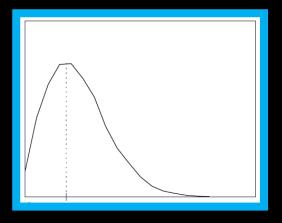
- Mean and std of ROI in homogeneous regions
- Use std in background ROI to estimate σ₀ $(\sigma_{bq} = 0.655 \, \sigma_0, \, Rayleigh \, distribution)$
- $\sigma_{oi} > \sigma_{bq}$ Gaussian vs. Rayleigh;
- Scan twice, add and subtract the two images to get mean and std ($\sigma_{sub} = \sqrt{2}\sigma_0$)
- Collect multiple volumes of images for voxel wise **SNR (tSNR)**

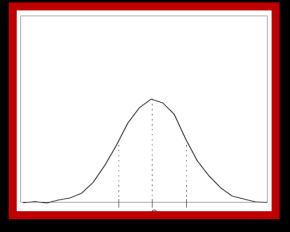


Measuring SNR

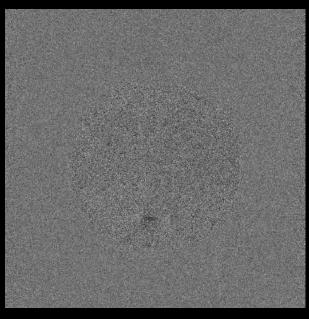
 $(\sigma_{bg} = 0.655 \sigma_0, Rayleigh distribution)$

$$\sigma_{oj} > \sigma_{bg}$$





Single Acq



subtracted

SNR dependence on imaging parameters

Voxel signal $\propto \Delta x$ (Voxel volume)

Noise standard deviation
$$\sigma \propto \frac{1}{\sqrt{N_\chi}}$$

Noise standard deviation
$$\sigma \propto \frac{1}{\sqrt{N_{acq}}}$$

Noise standard deviation
$$\sigma \propto \sqrt{BW_{readout}}$$

$$SNR/voxel \equiv \frac{Signal_{voxel}}{\sigma} \propto \frac{\Delta x \Delta y \Delta z \sqrt{N_{acq}}}{\sqrt{\frac{BW_{read}}{N_x N_y N_z}}}$$

SNR dependence on imaging parameters

$$SNR/voxel \equiv \frac{Signal_{voxel}}{\sigma} \propto \frac{\Delta x \Delta y \Delta z \sqrt{N_{acq}}}{\sqrt{\frac{BW_{read}}{N_x N_y N_z}}}$$

$$\frac{1}{\Delta t} = \gamma \cdot G_{\chi} \cdot N_{\chi} \cdot \Delta \chi \text{ Total read bandwidth}$$

$$\frac{SNR}{voxel} \propto \Delta x \Delta y \Delta z \sqrt{N_{acq} N_x N_y N_z \Delta t}$$

$$T_{\rm S}=N_{\rm X}\Delta t$$

$$\frac{SNR}{voxel} \propto \Delta x \Delta y \Delta z \sqrt{N_{acq} N_y N_z T_s}$$

$$SNR/voxel \propto \frac{\Delta x \Delta y \Delta z \sqrt{N_{acq}}}{\sqrt{\frac{BW_{read}}{N_x N_y N_z}}}$$

 $\mathrm{SNR/voxel} \propto \Delta x \Delta y \Delta z \sqrt{N_{acq} N_x N_y N_z \Delta t}$

 $SNR/voxel \propto \Delta x \Delta y \Delta z \sqrt{N_{acq} N_y N_z T_s}$

(a)
$$L_x = N_x \Delta x$$

(b)
$$L_y = N_y \Delta y$$

(c)
$$L_z = N_z \Delta z$$

(d)
$$T_s = N_x \Delta t$$

(e)
$$BW_{read} = \frac{1}{\Delta t} = \gamma G_x L_x$$
 (f)

$$BW/\text{voxel} = BW_{read}/N_x$$

Case	Δx	N_x	L_x	G_x	Δt	T_s	SNR	
Reference case								
1	Δx_0	N_0	L_0	G_0	Δt_0	$T_{s,0}$	1	
6	$\Delta x_0/2$	N_0	$L_0/2$	G_0		ı	I	
7	$\Delta x_0/2$		$L_0/2$	$2G_0$				

$$SNR/voxel \propto \frac{\Delta x \Delta y \Delta z \sqrt{N_{acq}}}{\sqrt{\frac{BW_{read}}{N_x N_y N_z}}}$$

 $SNR/voxel \propto \Delta x \Delta y \Delta z \sqrt{N_{acq} N_x N_y N_z \Delta t}$

 $SNR/voxel \propto \Delta x \Delta y \Delta z \sqrt{N_{acq} N_y N_z T_s}$

(a)
$$L_x = N_x \Delta x$$

(b)
$$L_y = N_y \Delta y$$

(c)
$$L_z = N_z \Delta z$$

(d)
$$T_s = N_x \Delta t$$

(e)
$$BW_{read} = \frac{1}{\Delta t} = \gamma G_x L_x$$
 (f) $BW/\text{voxel} = BW_{read}/N_x$

$$BW/\text{voxel} = BW_{read}/N_x$$

Case	Δx	N_x	L_x	G_x	Δt	T_s	SNR	
Reference case								
1	Δx_0	N_0	L_0	G_0	Δt_0	$T_{s,0}$	1	
0	/	3.7	T /C	~	2.4.	2.77	4 / /2	
6	$\Delta x_0/2$	N_0	$L_0/2$	G_0	$2\Delta t_0$	$2T_{s,0}$	$1/\sqrt{2}$	
7	$\Delta x_0/2$	N_0	$L_0/2$	$2G_0$	Δt_0	$T_{s,0}$	1/2	

SNR dependence on imaging parameters

$$SNR/voxel \equiv \Delta y \Delta z \sqrt{N_y N_z}$$

$$\frac{SNR}{voxel} \propto \Delta x \Delta y \Delta z \sqrt{N_{acq} N_y N_z T_s}$$

2D vs 3D

$$\Delta z \equiv TH$$

$$(SNR/voxel)|_{2D} \propto \Delta x \Delta y TH \sqrt{N_y T_s}$$

SNR vs. B₀

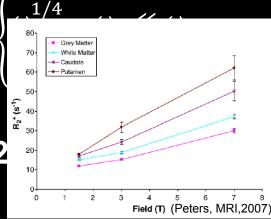
 B_0 affects MRI signal and noise in a number of ways, e.g. M_0 , T1, T2, field inhomogeneity, and thus T2*

$$- s \propto \frac{B_0^2 V_{voxel}}{T} \propto \omega_0^2$$

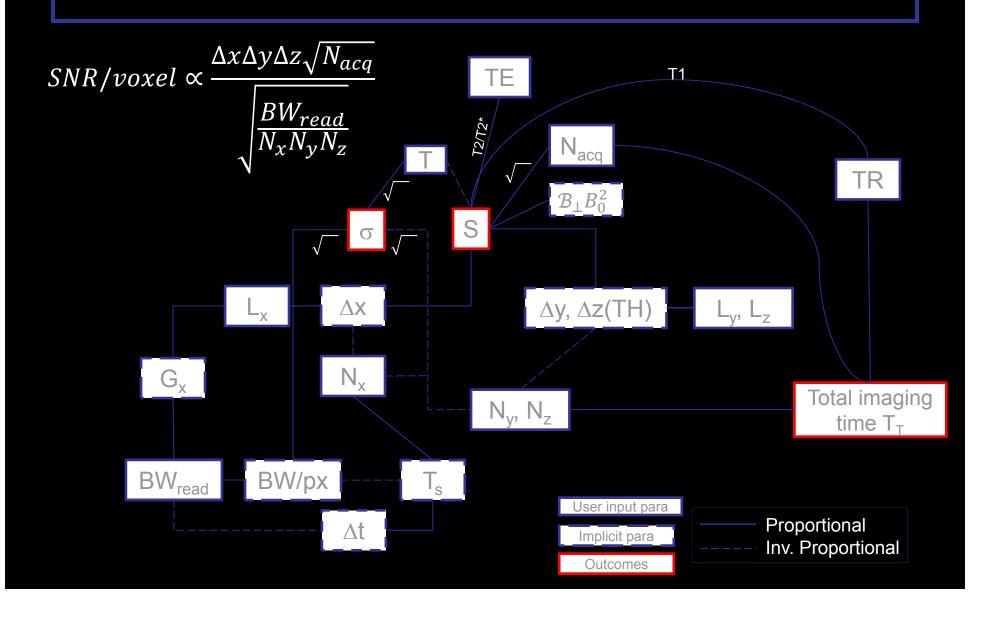
$$-R_{eff}(\omega_0) \approx \begin{cases} R_{coil}(\omega_0) + R_{electronices}(\omega_0) \\ R_{sample}(\omega_0) \end{cases} \propto \begin{cases} \sqrt{\omega_0}, & \omega_0 \ll \omega_{0,mid} \\ \omega_0^2, & \omega_0 \gg \omega_{0,mid} \end{cases}$$

$$SNR(\omega_0) \propto \begin{cases} \omega_0^{7/4} \\ \omega_0 \end{cases} \qquad \sigma_{thermal} \propto \delta_0$$

Higher B₀ -> longer T1, shorter T2/T2



SNR dependence on imaging parameters



Imaging efficiency

Total imaging time

$$T_T = N_{acq} N_y N_z T R$$

 Imaging efficiency (with otherwise fixed parameters)

$$\Upsilon \equiv \frac{SNR/voxel}{\sqrt{T_T}} \propto \Delta x \Delta y \Delta z \sqrt{T_S}$$

- Implications
 - Large voxels yield better SNR efficiency
 - So does longer readout (or lower RO bandwidth). But sometimes T2* decay may negates the effects

High SNR is only half the story

The other half is to be able to distinguish different object/structure/properties, i.e. have contrast with the presence of noise

Contrast: simply the signal difference

$$C_{AB} \equiv S_A - S_B$$

CNR: contrast-to-noise ratio

$$CNR_{AB} \equiv SNR_A - SNR_B$$

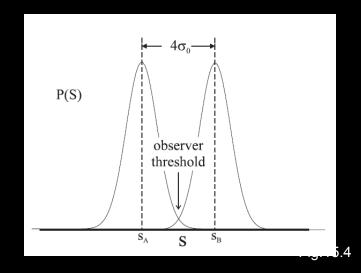
when
$$\sigma_A=\sigma_B=\sigma_0$$
, $CNR_{AB}=rac{C_{AB}}{\sigma_0}$

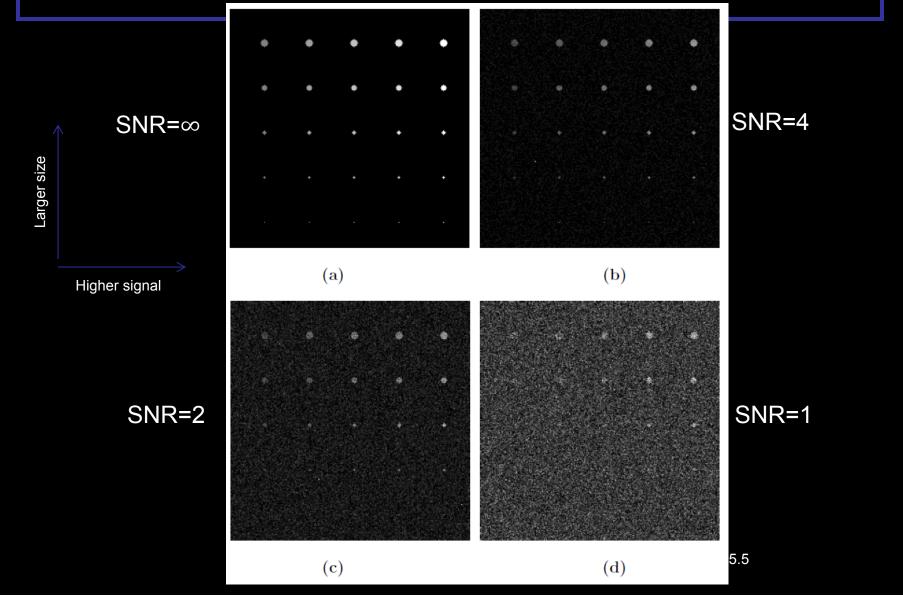
Visibility

$$\mathcal{V}_{AB} \equiv rac{\mathcal{C}_{AB}}{\sigma_{eff}} = rac{\mathcal{C}_{AB}}{\sigma_0} \sqrt{N_{acq}} = rac{\mathcal{C}_{AB}}{\sigma_0} \sqrt{n_{voxel}}$$
Temporal Spatial

The Rose Criterion

 $CNR_{AB} > 3 \sim 5$





Homework

• Prob 15.1, 15.3, 15.4, 15.8, 15.10, 15.12, 15.13

Next Session

Chapter 15.3-15.6

Contrast mechanisms in MRI

MRI is a multiple contrast imaging modality

Intrinsic:

- spin density
- T1/T2/T2*/T1p
- Diffusion
- Chemical shift
- Susceptibility
- **Temperature**

Physiological:

- Blood flow
- Perfusion
- Blood oxygenation
- Tissue elasticity

Sequence specific:

- Steady state (chap.18)
- Selective excitation /suppression

Or multiple methods for the same contrast

Example:

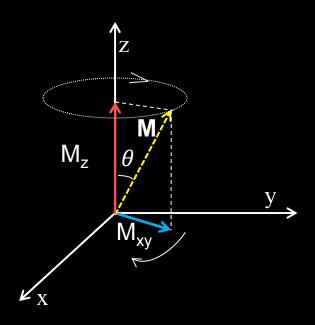
T1W: short TE/TR GE, or IR
Signal nulling: IR, selective excitation/saturation, dephasing

Basic Contrast Mechanisms: Relaxation effects

$$\frac{d\vec{M}}{dt} = \gamma \cdot \vec{M} \times B + \frac{M_0 - M_z}{T_1} - \frac{M_{xy}}{T_2}$$

 M_0 is the equilibrium magnetization

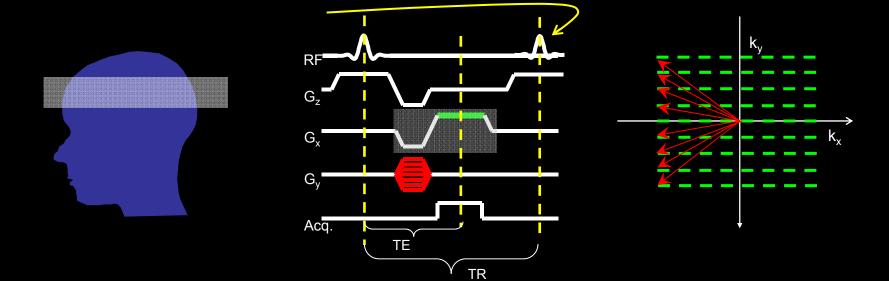
 M_{xy} is the transverse magnetization



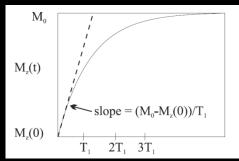
Contrast

Tissue	$T_1 (\mathrm{ms})$	$T_2 (\mathrm{ms})$
gray matter (GM)	950	100
white matter (WM)	600	80
muscle	900	50
cerebrospinal fluid (CSF)	4500	2200
fat	250	60
$blood^3$	1200	$100-200^4$

Contrast

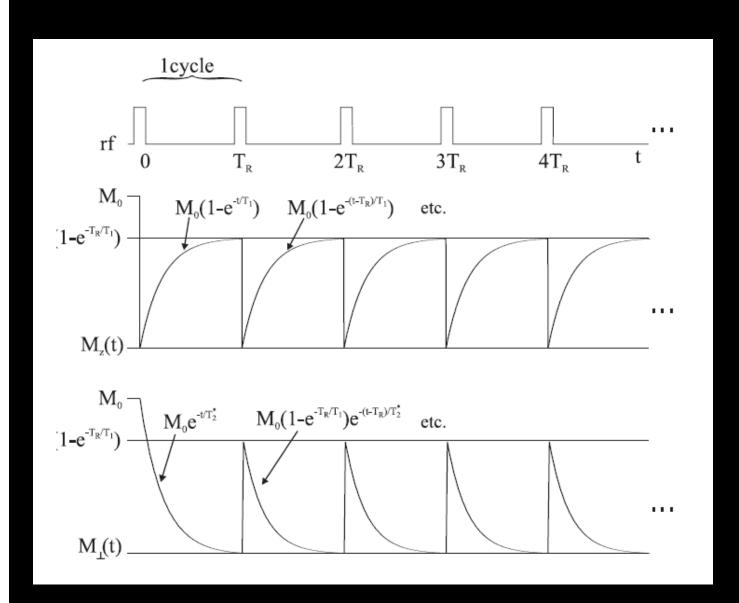


Once you tip the magnetization of a tissue, it takes a finite amount of time for it to recover

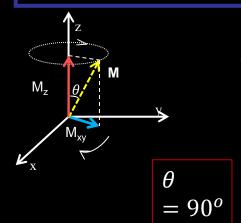


With repeated rf pulse excitations during image acquisition, the time intervals of repetition and acquisition (TR,TE), along with T1 and T2 values of different tissue determine the final contrast

Magnetization equations



Magnetization equations

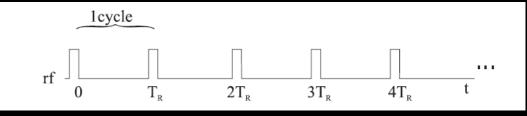


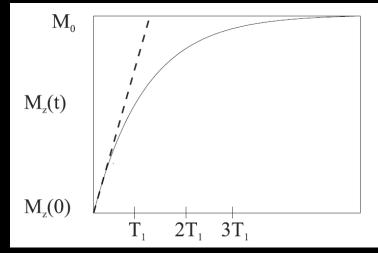
$$M_z(t) = M_z(0) \cdot e^{-\frac{t}{T_1}} + M_0 \cdot \left(1 - e^{-\frac{t}{T_1}}\right)$$
 $M_{xy}(t) = M_{xy}(0) \cdot e^{-\frac{t}{T_2}}$

$$M_{xy}(t) = M_{xy}(0) \cdot e^{-\overline{T}_2}$$

$$M_z(0) = M_0 \cdot \cos(\theta)$$

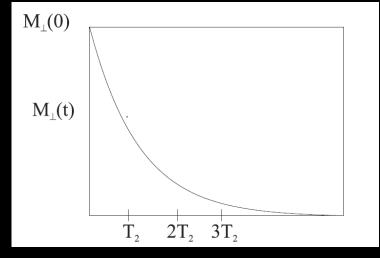
$$M_{xy}(0) = M_0 \cdot \sin(\theta)$$





$$M_{z}(TR^{-}) = M_{0} \cdot \left(1 - e^{-\frac{TR}{T_{1}}}\right)$$

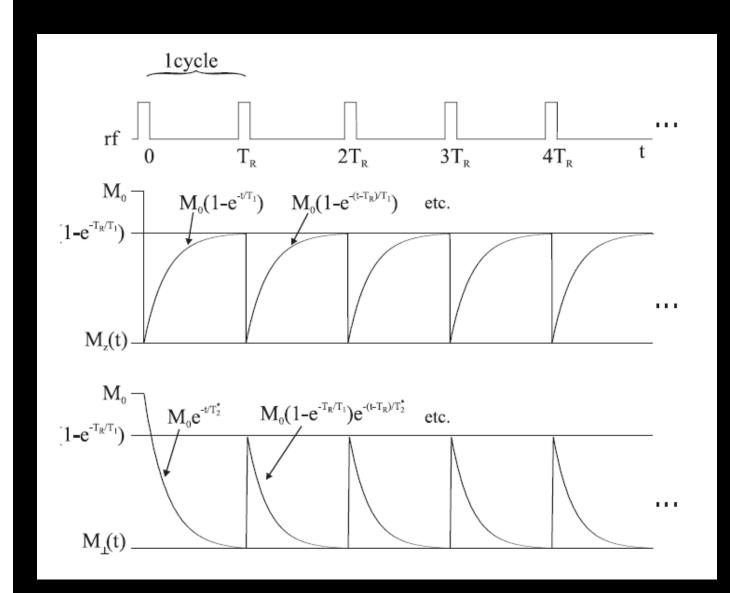
$$M_{xy}(t) = M_{xy}(0) \cdot e^{-\frac{TR}{T_2}}$$



$$M_{xy}(TE) = M_0 \cdot \left(1 - e^{-\frac{TR}{T_1}}\right) \cdot e^{-\frac{TE}{T_2}}$$

$$TR \gg T_2$$

Magnetization equations

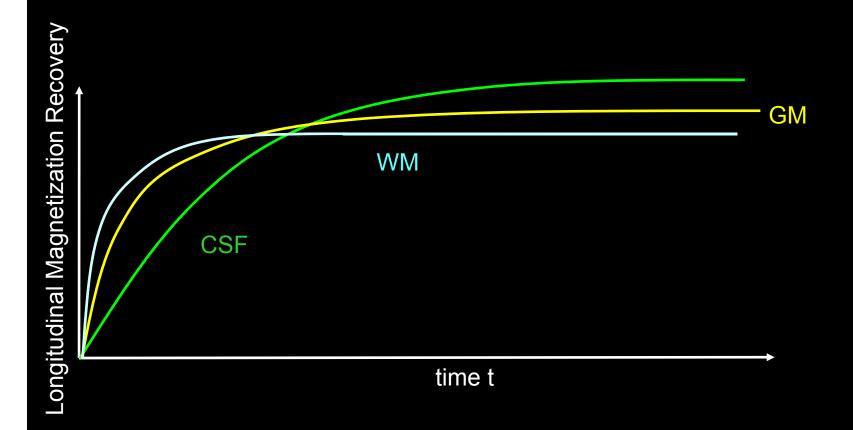


Take-aways from the math

Steady state reached by the second rf pulse

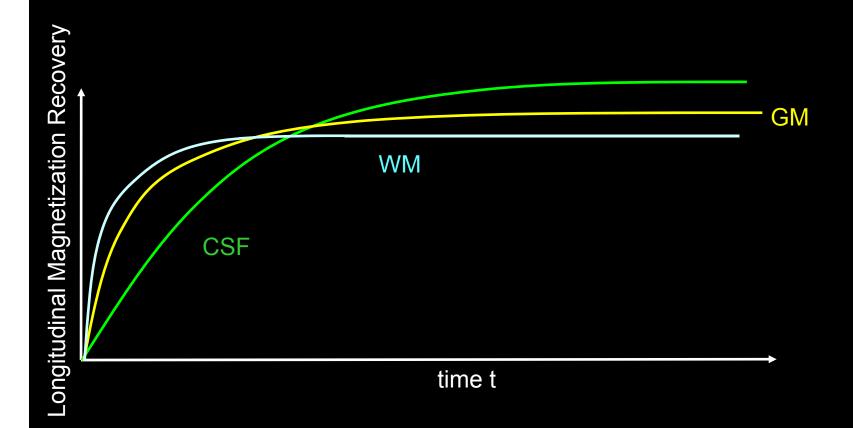
Steady state meaning... $M_z(TR)$ and $M_{xy}(TE)$ are constant

Contrast



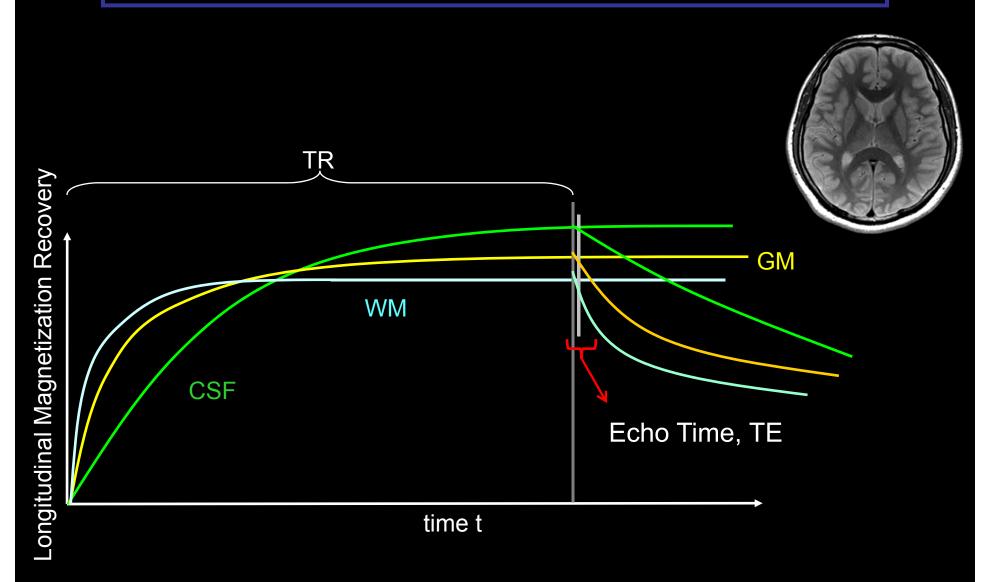
Contrast

Different tissues have different amounts of water and hence different densities of ¹H protons within them.

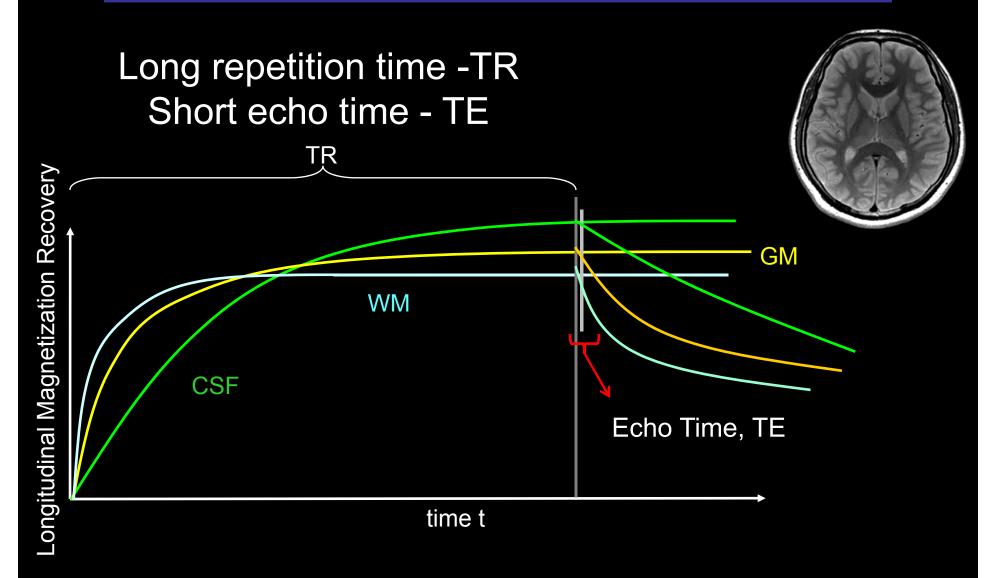


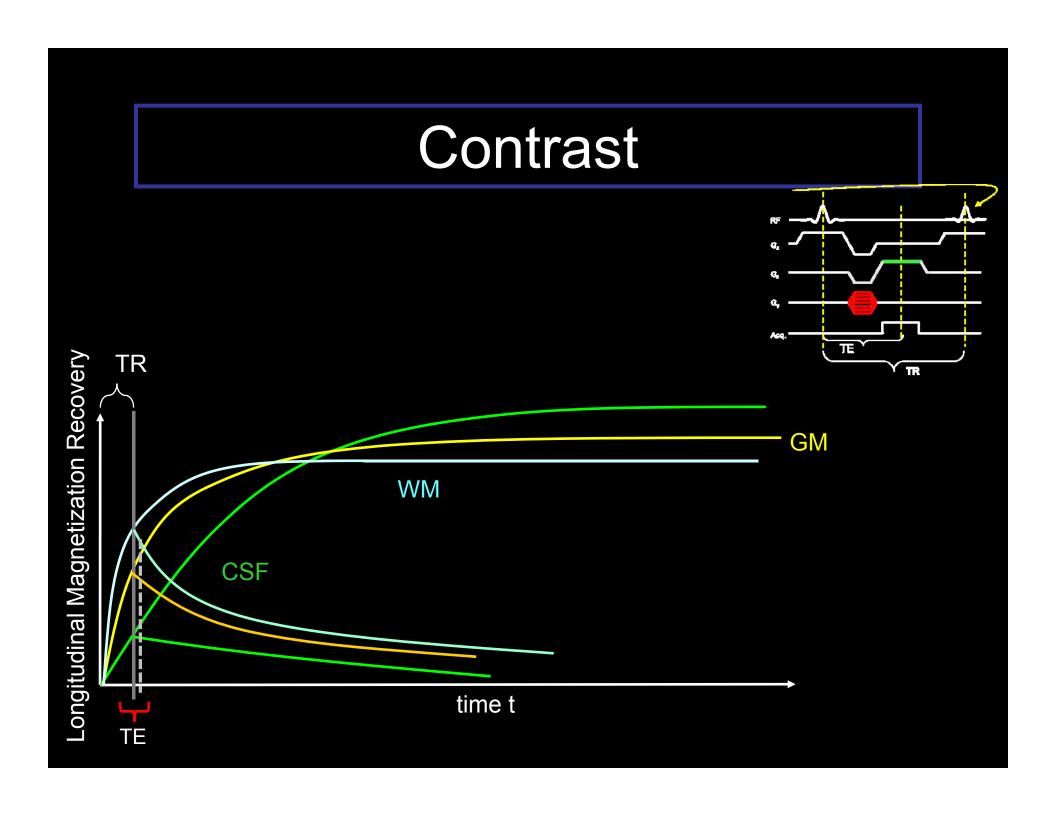
Contrast $M_{xy}(t) = M_{xy}(0) \cdot e^{-\frac{TE}{T_2}}$ ΤŖ Longitudinal Magnetization Recovery GM WM CSF Echo Time, TE time t

Contrast... ρ_0 weighting

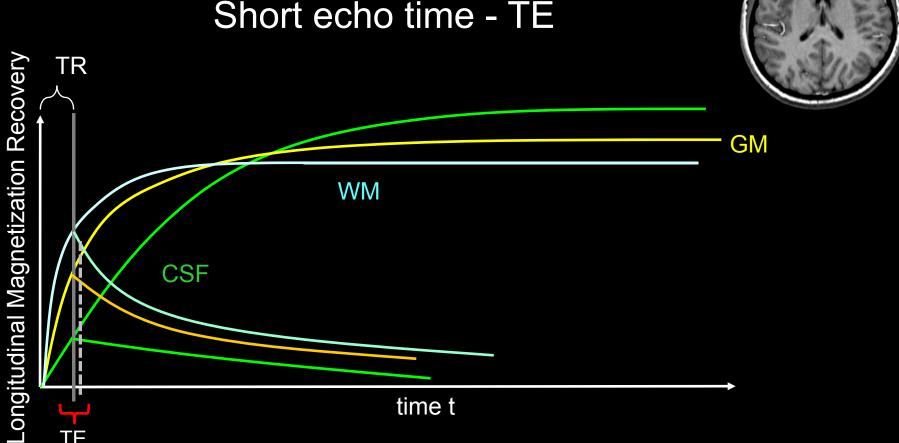


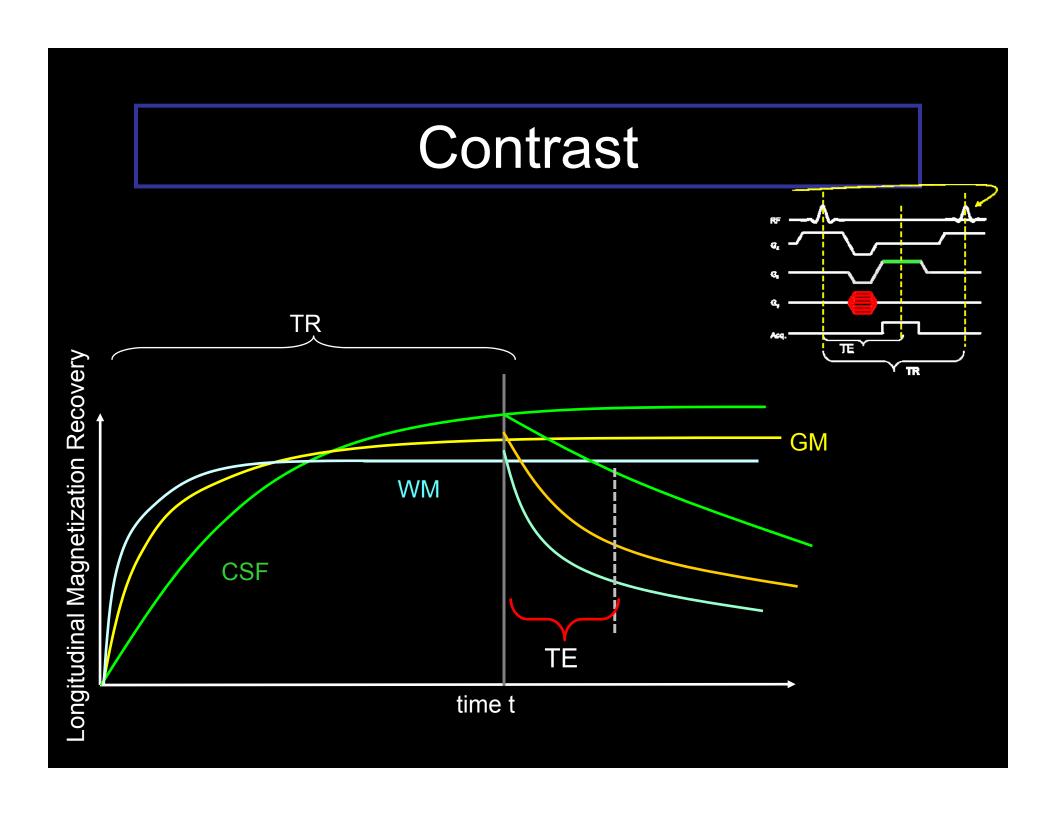
$\overline{\text{Contrast...}\rho_0}$ weighting



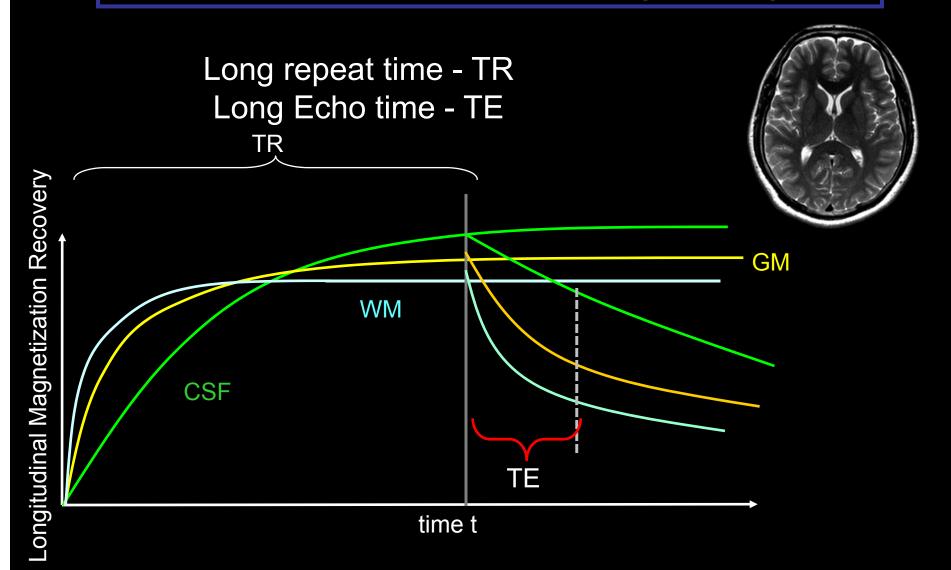


Contrast... T_1 weighting





Contrast... T_2 weighting



 $\square \rho_0$, T1 and T2 (T2*)

$$S_A(TR, TE) = \rho_{0,A}(1 - e^{-TR/T_{1,A}})e^{-TE/T_{2,A}^*}$$

$$S_B(TR, TE) = \rho_{0,B}(1 - e^{-TR/T_{1,B}})e^{-TE/T_{2,B}^*}$$

$$C_{AB}(TR, TE) = S_A(TR, TE) - S_B(TR, TE)$$

• Spin density weighting

TR
$$\Box$$
T1 => e^{-TR/T_1} ->0

TE \Box T2* => e^{-TE/T_2^*} ->1

$$C_{AB}(TR,TE) pprox
ho_{0,A} -
ho_{0,B} + \Box$$

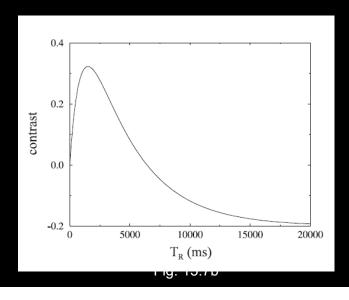
Note: $\rho_{0,A}$ and $\rho_{0,B}$ are effective spin density

• T1 weighting $\rho_0(1 - e^{-TR/T_1})e^{-TE/T_2^*}$

use TETT2*

 e^{-TE/T_2^*}

$$C_{AB}(TR) \approx \rho_{0,A} - \rho_{0,B} - (\rho_{0,A}e^{-\frac{TR}{T_{1,A}}} - \rho_{0,B}e^{-\frac{TR}{T_{1,B}}})$$



$$TR_{opt} = \frac{\ln\left(\frac{\rho_{0,B}}{T_{1,B}}\right) - \ln\left(\frac{\rho_{0,A}}{T_{1,A}}\right)}{\frac{1}{T_{1,B}} - \frac{1}{T_{1,A}}}$$

 $=T_{1,A}|_{T_1}$ T1 values at 3T

GM: ~1200ms

WM: ~800ms

CSF: ~2-4s

$$S(TR, TE) = \rho_0 (1 - e^{-TR/T_1}) e^{-TE/T_2^*}$$

T2* weighting

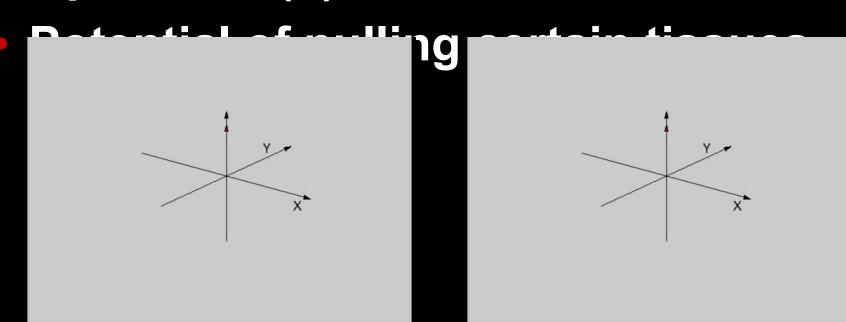
use
$$TR \square T1 \implies$$
 $e^{-TR/T_1} \rightarrow 0$

$$C_{AB}(TE) = 0 + \frac{\int_{TE_{0p}}^{TE} T_{2,A}^{*} T_{2,A}^{*} \left(\frac{\rho_{0,A}}{T_{2,A}^{*}}\right)_{0,B} e^{-\frac{TR}{T_{2,B}^{*}}}}{\int_{T_{2,A}^{*}}^{TE} \left(\frac{\rho_{0,A}}{T_{2,A}^{*}}\right)_{0,B} e^{-\frac{TR}{T_{2,B}^{*}}}$$

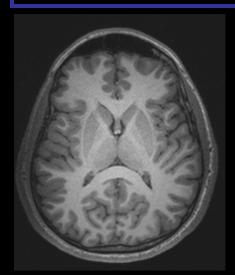
$$= T_{2,A}^{*}|_{T_{2,A}^{*} \cong T_{2,B}^{*}}$$

Thyeighting with hyversion recovery (chap 8.4)

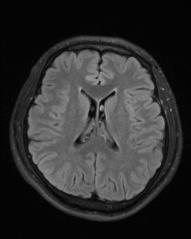
- IR may double the T1 contrast relative to GE
- Optimal TI (?)



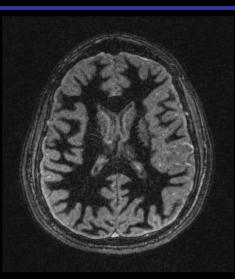
IR examples



T1W

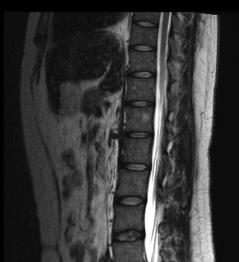


CSF nulling, T2W



WM+CSF nulling

GM+CSF nulling



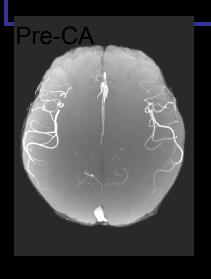
T2W

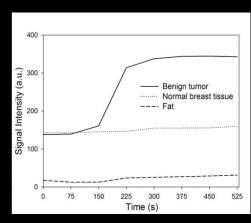
Fat nulling,T2W

Contrast enhancement with T1-shortening agents (Gd)

- With T1 shortened, target tissue will have increased signal in short TR GE images
- T1 shortening effect proportional to agent concentration
- Target tissue example:
 - Blood (MR angiography, perfusion weighted imaging)
 - Tumor
 - Vessel wall lesion

Contrast enhanced images







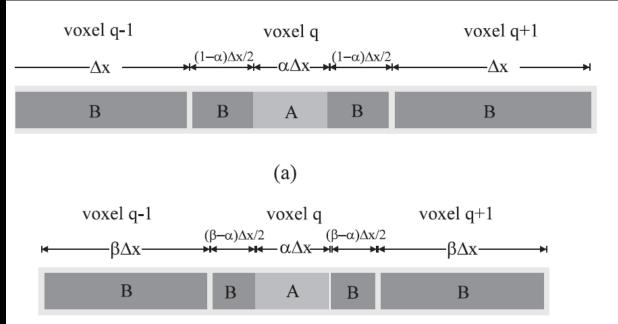
CNR, partial volume and resolution

$$\mathcal{V}_{AB} \equiv \frac{\mathcal{C}_{AB}}{\sigma_{eff}} = \frac{\mathcal{C}_{AB}}{\sigma_0} \sqrt{N_{acq}} = \frac{\mathcal{C}_{AB}}{\sigma_0} \sqrt{n_{voxel}}$$

- Resolution \square -> σ_0 \square -> n_{voxel} \square -> \mathcal{V}_{AB} (?)
- Partial volumed voxel contains >1 tissues/objects
- Partial volume effect (PVE) is inevitable in in-vivo MR imaging
 - Finite voxel size (0.25mm ~ 4mm)
 - Complex tissue boundaries
 - Micro vasculature/structures

CNR, partial volume and resolution

- Size of A: $\alpha\Delta x$, (α <1)
- Size of B: Δx or $\beta \Delta x$, (β <1)
- In both scenarios: $C_{AB} = \alpha(S_A S_B)$
- Noise σ : $\sigma(\alpha) = \sigma_0$, $\sigma(\alpha L_x, N)$ $\sigma(\alpha) = \sigma_0 / \sqrt{\alpha}$, $\sigma(L_x, \alpha N)$

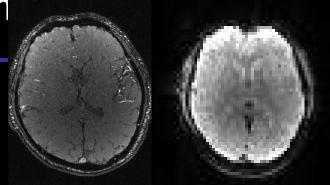


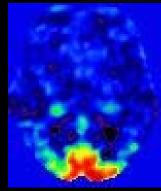
15.13

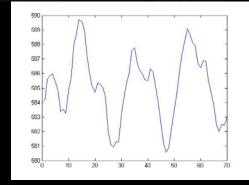
How PVE affects the im

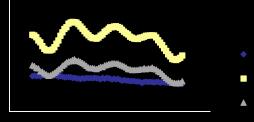
Blurring

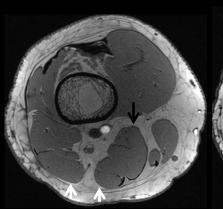
- Signal dephase (T2'/T2*, BOLD imaging, chap 25)
- Double/multiple T2/T2* exponential decay
- Signal cancellation (water/fat)

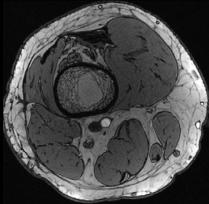












Signal and noise of phase images

- S_{phase} is affected by chemical shift, local susceptibility and/or motion, offering different contrast than magnitude images
- S_{phase} is a relative value since baseline ϕ_0 is unknown
- Only the contrast in phase has useful information
- $\sigma_{phase} = 1/SNR_{mag}$
- Phase may still provides sufficient contrast when magnitude fails

Phase imaging applications

- Chemical shift (fat/water) imaging (Chap. 17)
- B₀ field homogeneity mapping (Chap. 20)
- Phase contrast MR angiography (Chap. 24)
- Blood flow quantification (Chap. 24)
- Susceptibility Weighted Imaging (SWI, Chap. 25)

Homework

• Prob 15.1, 15.3, 15.4, 15.8, 15.10, 15.12, 15.13

Next Session

Chapter 15.3-15.6

T1 values at 3T GM: ~1200ms WM: ~800ms

CSF: ~2-4s

Examples: