Chapter 22&25 Quantification MRI and Susceptibility in MRI

Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Previous classes:

- Spin density, T1 and T2 (Chaps. 8)
- GE and SE (chap.8)
- Field inhomogeneity (Chap. 20)

Today's content

- Spin density, T1 and T2 quantification
- Susceptibility, phase imaging, BOLD effects

Overview

- Why quantification?
 - Tissue characterization
 - Better understand contrast mechanisms
 - Protocol optimization / imaging post processing
- Challenges
 - Other contrast mechanism at work
 - Sequence design and scan strategy
 - Unknown baseline / Noise

Contrast mechanisms in MRI

MRI is a multiple contrast imaging modality

Intrinsic:

- spin density
- T1/T2/T2*/T1p Perfusion
- Diffusion
- Chemical shift
- Susceptibility
- **Temperature**

Physiological:

- Blood flow
- Blood oxygenation
- Tissue elasticity

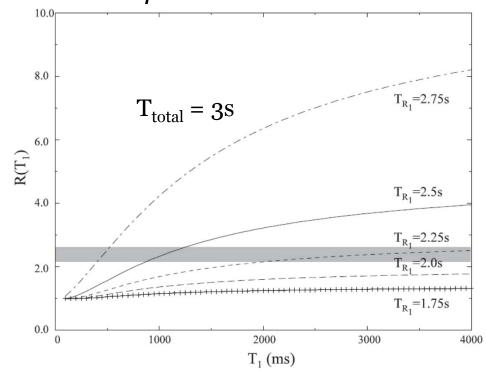
Sequence specific:

- Steady state
- Selective excitation /suppression
- Diffusion
- Flow encoded/dephase

Other MRI quantification:

- Bo / B1 field variation
- Water-fat ratio

- Simple spin echo signal $\hat{\rho}(TR, TE) = \rho_0 (1 e^{-TR/T1}) e^{-TE/T2}$
- Spin density weightings
 - \neg TE->0, TR-> ∞ or TE<<T2, TR>>T1
- T1 measurement
 - □ TE<<T2, TR<<T1
- T2 measurement
 - □ TE≈T2, TR>>T1
- Latest development
 - MR Fingerprinting (Ma et al, Nature, 2013)


Signal Ratio Measurements

• T1 (Spin echo)

$$\hat{\rho}1 = \rho_0 (1 - e^{-TR1/T1}) e^{-TE/T2}$$

$$\hat{\rho}2 = \rho_0 (1 - e^{-TR2/T1}) e^{-TE/T2}$$

$$R \equiv \frac{\hat{\rho}1}{\hat{\rho}2} = \frac{1 - e^{-TR1/T1}}{1 - e^{-TR2/T1}}$$

Fixed total time constraint:

$$T_{\text{total}} = N_{\text{acq}_1}TR_1 + N_{\text{acq}_2}TR_2$$

Works best when TR1>>TR2

Fig. 22.1

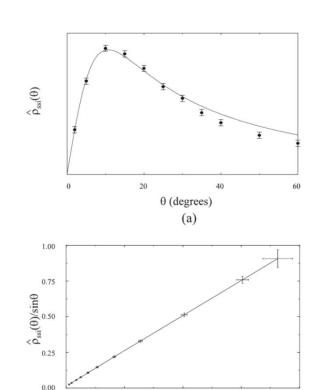
Signal Ratio Measurements

T2 (spin echo)

$$\hat{\rho}1 = \rho_0 (1 - e^{-TR/T1}) e^{-TE1/T2}$$

$$\hat{\rho}2 = \rho_0 (1 - e^{-TR/T1}) e^{-TE2/T2}$$

$$\widehat{T_2} = \frac{TE2 - TE1}{\ln(\widehat{\rho}1/\widehat{\rho}2)}$$


Similarly for T2* measurement

Multiple signal measurements

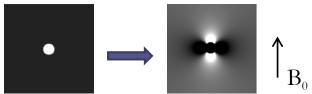
- T1
 - Multiple TR with SR (saturation recovery)
 - Multiple TI with IR (or SR)
 - Nulling point TI with IR
- T2(*)
 - Multiple TE (or echoes)
 - Different echo spacing for SE and GE
 - Partial volume effects or Water exchange effects (dual exponential model)

Misc QMRI methods

- Misc QMRI methods
 - Look locker
 - SSI with multiple flip angle
 - Fingerprinting
 - •••
- Practical issues
 - 2D vs. 3D (time)
 - Slice profile
 - B1 inhomogeneity (esp. FSE)
 - Partial volume effects
 - Noise

 $\hat{\rho}_{ssi}(\theta)/\tan\theta$

Susceptibility


• Or magnetic susceptibility, χ , describes the extent of a substance gets magnetized in an external magnetic field

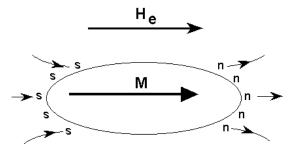
$$\chi = \frac{\mu}{\mu_0} - 1$$

 $^*\mu$ and μ_o are magnetic permeability of the substance and vacuum $^*\chi$ is defined relative to vacuum in physics $^*\chi$ is defined relative to water in MRI $^*\chi$ is of ppm/ppb scale

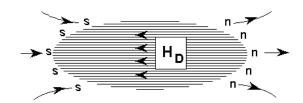
$$\vec{B} = \mu \vec{H}$$
$$\vec{M} = \chi \vec{H}$$

The magnetic field around the object depends on many factors

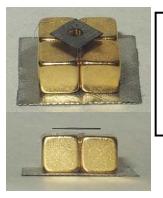
Susceptibility properties


- Paramagnetism / Superparamagnetism
 - $\chi > 0$, i.e. attracted to external magnetic field
 - Increase surrounding fields
 - Iron, magnesium, Aluminum

Diamagnetism

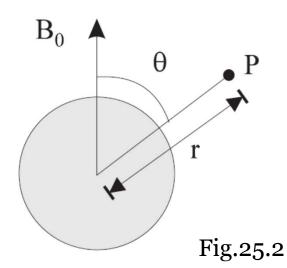

- $\gamma < 0$, i.e. repulsed by external magnetic field, usually very week
- Decrease surrounding fields
- Calcium, water, diamond

Ferromagnetism


- $\chi > 0$, and retain magnetization
- iron, nickel, cobalt, gadolinium, dysprosium, and various alloys and oxides
- Fridge magnets, Neodymium

Magnetization Produces Apparent Suface Pole Distribution

Demagnetizing Field Due to Apparent Surface Pole Distribution



Objects in External Fields

Sphere (e.g. microbleeds)

$$\vec{B}_{out} = \left[\frac{\chi}{3+\chi} \frac{a^3}{r^3} \left(3\cos^2 \frac{\theta}{r} \hat{r} - 1 \right) + \hat{z} \right] B_0 \quad \longrightarrow \quad \Delta \vec{B}_{out} \approx \frac{\Delta \chi}{3} \frac{a^3}{r^3} \left(3\cos^2 \frac{\theta}{r} - 1 \right) \vec{B}_0$$

$$\vec{B}_{in} = 3B_0 \frac{1+\chi}{3+\chi} \hat{z} \qquad \longrightarrow \quad \Delta \vec{B}_{in} \approx \frac{2\Delta\chi}{3} B_0$$

Objects in External Fields

• Infinite Cylindrical Body (e.g. vessels)

$$\vec{B}_{out} = \left(\frac{\frac{\chi}{2}}{1 + \frac{\chi}{2}} \frac{a^2}{\rho^2} (\hat{x} \cos 2\phi + \hat{y} \sin 2\phi)\right) \sin \theta B_0 + \cos \theta \hat{z} B_0$$

$$\vec{B}_{in} = \cos\theta (1+\chi)\hat{z}B_0 + \frac{1+\chi}{1+\chi/2}\sin\theta \hat{x}B_0$$

$$\Delta B_{out} = \frac{\Delta \chi}{2} \frac{a^2}{\rho^2} \sin^2 \theta \cos 2\phi B_0$$

$$\Delta B_{in} = \frac{\Delta \chi}{6} \left(3 \cos^2 \theta - 1 \right) B_0 \qquad \text{(With } \vec{B}_{int} = -\frac{2\mu_0}{3} \vec{M} \text{)}$$

$$\chi_{water} \simeq -9 \, ppm$$

$$\Delta \chi_{vein} \simeq 0.45 ppm$$

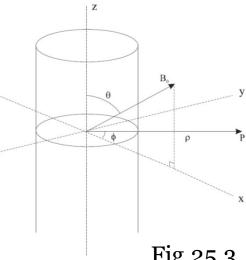
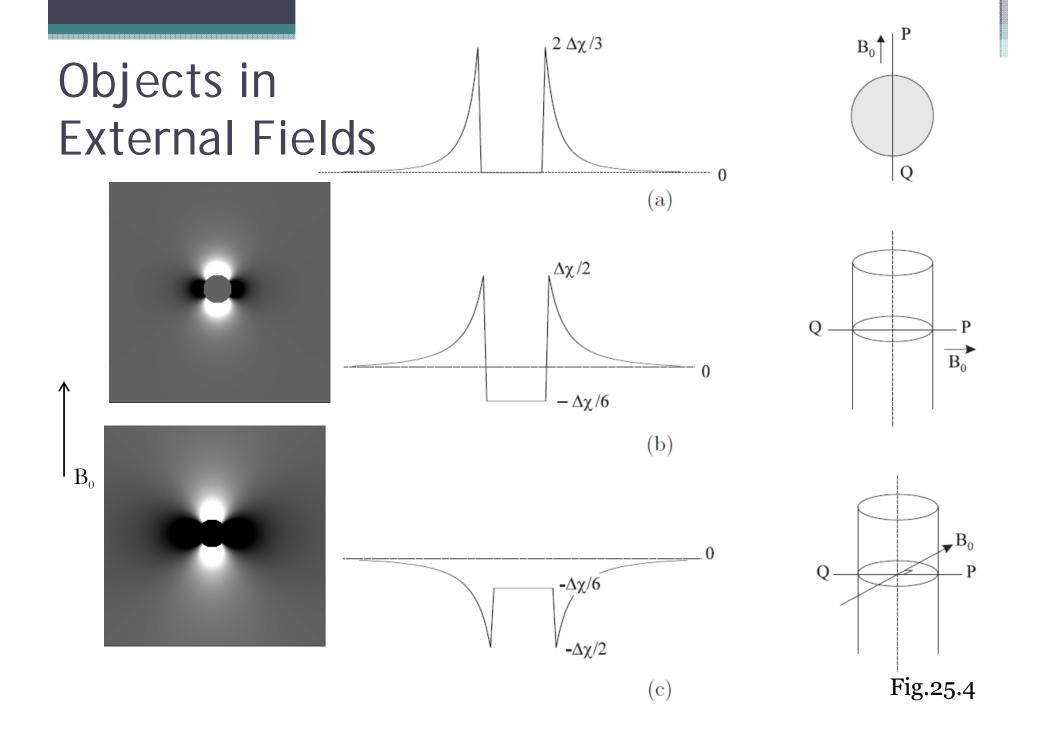
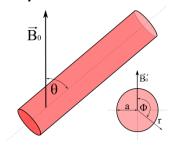



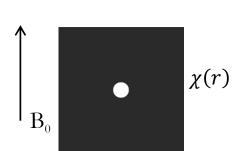
Fig.25.3

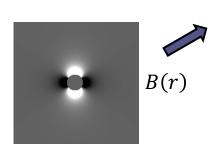
• Effect 1

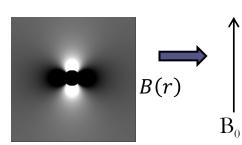
Dipole effect

Sphere

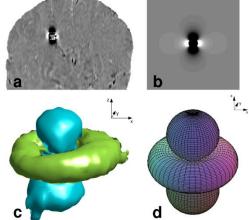

$$\Delta B_{in} = 0$$

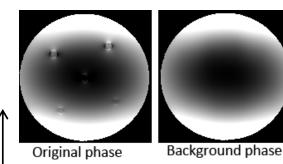

$$\Delta B_{out} = \frac{\Delta \chi}{3} \frac{a^3}{r^3} (3 \cos^2 \theta - 1) B_0$$

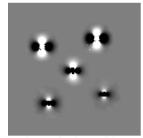


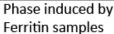

$$\Delta B_{in} = \frac{\Delta \chi}{6} (3\cos^2\theta - 1)B_0$$

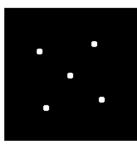
$$\Delta B_{out} = \frac{\Delta \chi}{2} \frac{a^2}{\rho^2} \sin^2 \theta \cos 2\phi B_0$$

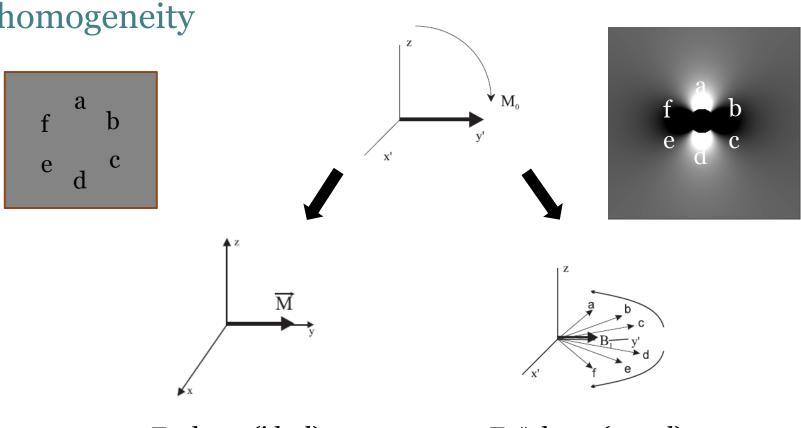








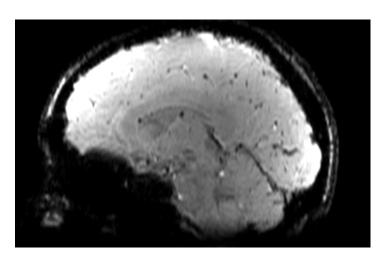

Right handed system $\Delta \chi > 0$

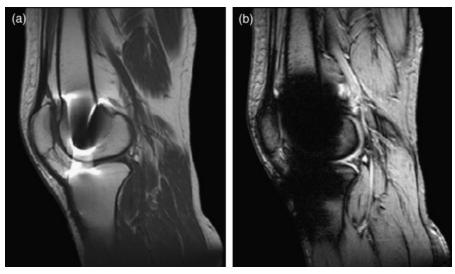


Ferritin samples

• Effect 2

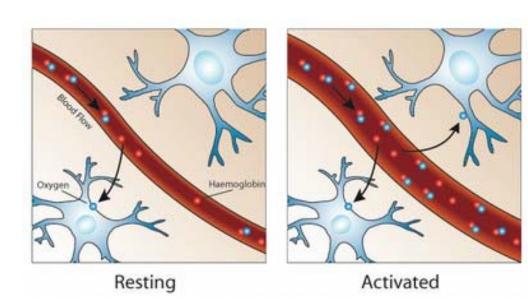
Reducing T2* by increasing local field

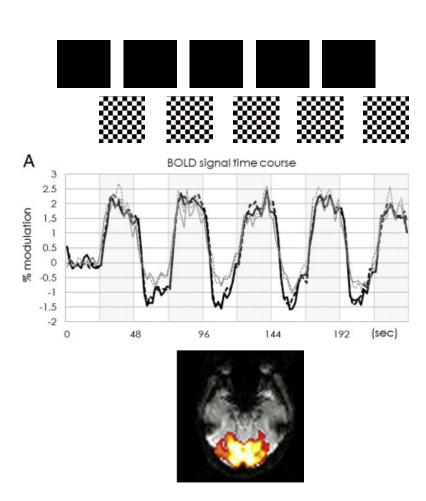

inhomogeneity


T2 decay (ideal)

T2* decay (actual)

- Effect 3
 - Signal dropouts and distortion at boundary with large susceptibility difference (global)


Sagittal GRE image with long TE



- (a) Ferromagnetic artifact seen in a T2 TSE sagittal image of the knee joint due to fixation screws in the femur.
- (b) A corresponding T2 GRE image was unreadable due to blooming effect in a GRE pulse sequence.

(Kaur et al. Radiography, 2007)

- Effect 4:
 - BOLD effects

Susceptibility and BOLD effects

- Venous blood susceptibility is related to oxygen saturation, hematocrit (HCT) and blood flow
 - Oxyhemoglobin diamagnetic
 - De-oxyhemoglobin paramagnetic
- Oxygen saturation level (Y) estimation

$$\chi_{blood} = Hct(Y\chi_{oxy} + (1 - Y)\chi_{deoxy}) + (1 - HCT)\chi_{plasma}$$

$$\Delta\chi_{blood} = -\Delta Y(\chi_{deoxy} - \chi_{oxy})HCT$$

$$\chi_{do} \equiv \chi_{deoxy} - \chi_{oxy} = 4\pi \cdot 0.18 \ ppm/HCT$$

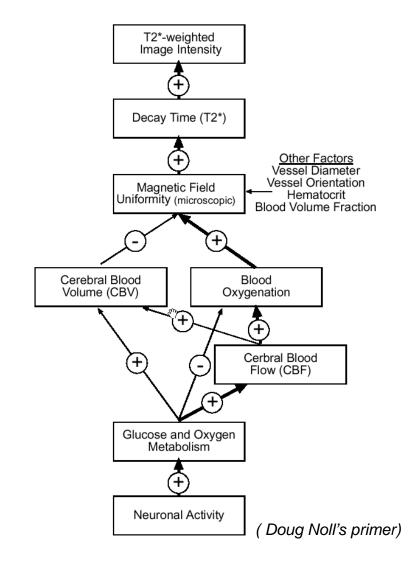
$$\chi_{blood,relative} \cong \chi_{blood} - \chi_{oxy}$$

= $0.72\pi \cdot HCT(1-Y)ppm$

Oxygen saturation level and blood low

$$\Delta Y = \left(1 - \frac{\beta}{1 + \alpha}\right)(1 - Y)$$

$$\stackrel{\beta=1}{\Longrightarrow} \Delta Y = \frac{\alpha}{1 + \alpha}(1 - Y)$$
MR Properties

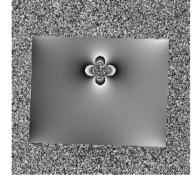

Physical Effects

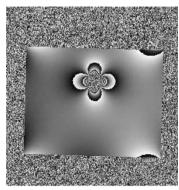
α: relative blood flow changeβ: relative metabolic rate change

Physiological Effects

> Metabolic Rates

Brain Function


Measuring local magnetic field variations


Phase imaging

$$\phi(\vec{r}, TE) = -\gamma \Delta B(\vec{r}) TE + \phi_0$$

 Note: susceptibility is only one of the properties that affect image phase, others include

- chemical shift
- motion (e.g. blood flow)
- field inhomogeneity
- RF pulses
- Gradients, eddy currents, etc.

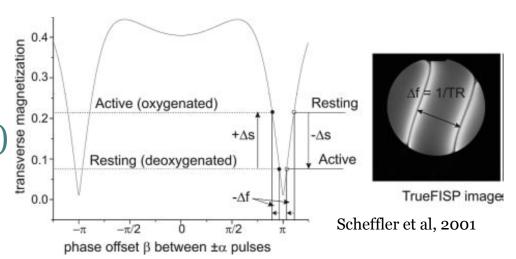

 Only susceptibility variation can lead to dipole effects outside of the source

Fig. 25.5

- Phase information is best revealed by high resolution gradient echo sequence
- MRI images only stores phase in a 2π range, thus phase wrapping can occur

Measuring local magnetic field variations

- Magnitude imaging
 - SSFP (SSC)
 - T2* mapping (ME GRE)
 - T2 mapping (FSE)

- Phase imaging
 - GRE
 - Shift echo SE

Homework

- 22.2, 22.3, 22.4, 22.6
- 25.2, 25.5, 25.10, 25.11

Next Session

Chapter 23