Chapter 26 Sequence Design, Artifacts and Nomenclature

Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Previous classes:

- RF pulse, Gradient, Signal Readout
- Gradient echo, spin echo, inversion recovery, etc
- K-space concept, filling trajectory and phase consistency

Today's content

- MR sequence components
- Sequence design and imaging parameters, how it is actually done
- Tricks and artifacts
- Sequence examples and nomenclature

MRI sequence 1, 2, 3 (literally)

- Essential MRI Sequence components:
 - RF pulse
 - Gradient
 - ADC
- Peripheral
 - Patient positioning
 - Imaging processor
 - Etc

MRI sequence 1, 2, 3 (literally)

- Sequence functionalities
 - Signal excitation
 - Signal preparation/manipulation/ modulation
 - Signal acquisition
- What is a MR sequence?

Generating RF pulse

An ideal RF pulse creates a spatially homogeneous electromagnetic field, denoted as B1

Using RF pulse to create M_{xv}

Basic Bloch Equation

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{B}_{ext}$$

i.e. M precesses around any external magnetic fields

• A RF pulse creates an electromagnetic field, i.e. B₁ field, with frequency also of $\omega_0 = \gamma B_0$

Lab Frame

Rotating Frame

RF pulse properties

- On- / off- resonant: $\omega_{rf} = /\neq \omega_{o}$
- Flip angle: tipping effect of the RF pulse
- Frequency response: Fourier transform of B₁(t)

• Bandwidth: within which spins are considered on-resonant

- Functionality
 - Excitation (needed for all; $\theta=0-\pi/2$)
 - Refocusing (for spin echo; $\theta = \pi/2 \pi$)
 - □ Inversion (IR; for T1W, tissue nulling; θ = π)

Excitation

(Berstein, et al. 2004)

- Temporal shape. i.e. B₁(t)
 - Sinc (widely used for spatially selective imaging)
 - Rectangular (non-selective excitation or IR)
 - Gaussian (Saturation, MTC)
 - VERSE (variable rate selective excitation)
 - Composite pulses (SLR)
 - etc...

Selectivity

Selective (soft):

Narrow BW with well defined frequency response, e.g. sinc pulse Example: $T_{sinc} = 5.12 \text{ms w} / 4 \text{ zero crossing } => \text{ BW} \approx 780 \text{Hz}$

Non-selective (hard):

Very broad BW, e.g. rectangular pulse Example: $T_{rect} = 100 \mu s => BW \approx 12100 Hz$

- Special purpose RF pulses
 - Selective excitation/saturation pulse (water or fat)
 - MTC (Magnetic transfer contrast, reduce signal of certain tissue via off-resonant effects. e.g. in MRA)
 - TONE pulse (spatially varied flip angle for MRA)
 - SPSP pulses (spatial-spectral selective)
 - Spin Lock pulse (Τ1ρW)
 - Adiabatic pulses (uniform response over non-uniform B1 field)

RF pulse consideration

- Small flip angle approximation (single pulse)
- Specific Absorption Rate (SAR) of RF power deposition, increase at higher flip angle/fields
- B₁ field uniformity/ dielectric effects, worse at higher fields
- Frequency response profile
- Application specific (2D,3D/contrast mechanism/ safety/ selectivity...)

Magnetic Gradient

• Definition Spatially varying magnetic field, G

Spatial field distribution Ideally to be spatially linear

Diagram symbol (gradient lobe)

Generating Gradient pulse

Gradient pulse properties

Arbitrary lobe shape, slew rate and G_{max} limited by

hardware

 Field variation should be spatially linear at any time

Gradient pulse properties

- Directionality
- Affects only the M_{xy} by itself alone
 Can affect M in any state when used with RF pulse
- Linearly addable (save time): no RF or readouts between

Types of gradient pulses

- Gradient lobe shapes
 - Trapezoid (most commonly use)
 - Spiral (special readout)
 - Triangle, or blips (EPI phase encoding)
 - Special gradient (e.g. VERSE)

Gradient categories

- Functionality
 - Readout/ Phase encoding/ Slice selection
 - Pre-phase/ Dephase / Rephase
 - Spoiler / Crusher / field compensation (e.g. z-shimming)
- Imaging contrast related gradients
 - Flow compensation/encoding/dephasing
 - Diffusion gradients
 - etc

Gradient design consideration

- Slew rate and G_{max} limited by gradient amplifier
- Fast/strong gradients lead to nerve stimulation, physical vibration, acoustic noise
- Eddy currents and image distortion
- Spatially limited linearity, lead to 'third arm artifacts'
- Application specific (image contrast/efficiency/)

Slice (slab) select gradient

- Translate spectral selectivity of the RF pulse to spatial selectivity
- Used for excitation, SE refocusing, IR
- oth moment (of the SS part) must be o before ADC turns on

Phase encoding gradient

- Represented as PE table in seq diagram
- PE reordering (ascending, center-out, etc), effects and restriction
- Affects minimal TE

Readout gradient

- Combined with ADC to collect freq encoded signal
- Echoes take place when oth moment becomes o again
- Sampling rate $\Delta t = \frac{1}{\gamma G_{RO}L_{RO}} = \frac{1}{BW}$
- ADC sampling duration T_s=N/BW

Sounds of MRI

Just for fun

Practical consideration of MR sequence programming

- Before the programming
 - Know the exact goal and major restrictions & potential problems
 - Draft up the sequence diagram
- During programming (apart from the inevitable coding works)
 - Timing; Timing; Timing
 - Consistency/interaction between parameters
 - Simulation and thorough checking on everything
- Debugging & optimization
 - Testing and use deduction to find the cause of problems (artifact, execution failure, etc)
 - Optimize sequence design and imaging parameters

Imaging parameter dependence (revisit)

- 1. What is the practical error in this diagram?
- 2. CPMG RF phase alternation scheme needed (90x/180y/180y/180y...)
- 3. Consideration: π pulse not strictly π

RARE (Fast Spin Echo) (Berstein, et al. 2004)

DTI with S-T diffusion gradients

Double IR for black blood imaging (Ridgway, JCMR, 2010)

(Ridgway, JCMR, 2010)

Artifacts (or Artefacts)

- A simple object (such as a tool or weapon) that was made by people in the past
- An accidental effect that causes incorrect results

Webster Dictionary

Artifacts

An image artifact is any feature which appears in an image which is not present in the original imaged object.

- Joseph P. Hornak

Bright line artifact/Chemical shift/crossover/
DC artifact/distortion artifact/flow artifact/ghosting/
line artifact/misregistration/motion artifact/ blurring/
Gibb's ringing (truncation) /starring artifact/ streamlining
artifact/ susceptibility artifact/ zebra stripe (phase aliasing)/
zipper artifact/spikes artifact...

(Above appeared in the Green Book)

But there are still many more out there...

Magic angle artifact/data clipping/ T2 shine through/ Partial volume/ inflow/outflow/ FOV wrapping/ third arm artifact/ RF interference...

And carelessness artifacts

Source of artifacts

- Hardware/electronic components
- Environmental effects
- Physiological effects (heart beat, respiration, motion, blood flow...)
- Implants or hygiene
- Operational error
- Protocol settings/Sequence design/ signal processing
- Mysterious sources

How to treat Artifacts

- Artifacts are inevitable, some being significant while others subtle, but most artifacts can be removed or alleviated or identified
- Apart from ruining the images, artifacts can actually be useful
 - As 'symptoms' for diagnosis of the underlying source
 - Forming new contrast mechanism: DWI, BOLD, PCFQ
 - Maybe bad for some sequence but good for others
 - They can be used for fun in some rare cases

Some routine artifacts

Spikes

Central point artifact

Data clipping

Aliasing

CUSP artifact

Radial recon artifact

Motion artifact

Random RF interference

Some subtle artifacts

T2 shrine through in DWI

Venous contamination in CEMRA

Parallel recon, g-factor

Chemical shift

3D TOF FS BORR

FatSat power leakage

My artifact collections

Zipper (RF) artifact

Double echo unbalanced gradients

Signal pathway interference in TSE

+ unsettled liquid

Temporally varying artifact

Homework

Try to find out the cause and solution for several types of MRI artifacts

Next Session

Review on SNR, resolution, imaging parameters and image contrast. (Mainly Chaps 15-20)
Q & A discussion