
Ch. 2
 Equation of motion: d/dt =  x B

This is the simplest version of the Bloch 
equation.

 Phase:  = –t
 Larmor equation:  = B
 Complex notation:+(t) = +(0) exp(–it)
 Precession
 Gyromagnetic ratio:  = 42.58 MHz/T



Magnetic force

dF = I dl x B
Total force on a closed loop is zero: 
∫dF = ∫I dl x B = – I B x ∫ dl = 0



Torque and rotation
 Even if the net force on a loop is zero, the 

loop may still rotate.
 Whether a loop will rotate depends on the 

torque on the loop.
 The torque is defined by dN = r x dF
 In the previous cases, the net torque of 

the left loop is zero so the loop will not 
rotate. However, the right loop has a non 
zero torque.



Torque and magnetic moment
 N = ∫dN = ∫r x dF = ∫ r x (I dl x B) = ∫ (B · r) I dl

– ∫ I B (r · dl) =  x B (use Stoke’s theorem and 
consider spatially independent I and B)

 Where  is the magnetic moment of the current loop 
and  = I A = I ∫dS

 A circular loop example (a): B = B(z cos+ y sin)
 = x cos+ y sin = –x sin+ y cos=>
dN = IBR2 sinsindand N = –IBR2 sinx



Torque and angular momentum
 Angular momentum J = r x p = r x (mv)
 dJ/dt = dr/dt x mv + r x dp/dt = 0 + r x F

= N (torque) … problem 2.3
 Experiments show  = J and gyromagnetic 

ratio for proton is  rad/s/T
 Famous gamma bar is defined as  = 

42.58 MHz/T.
 Homework problem 2.4 leads to a result 

from classical physics: q/(2m), where q is 
the particle charge and m is its mass.



Electron imaging
 mp/me ~ 1836. It implies the gyromagnetic 

ratio of electron is on the order of 1000 
times larger than the gyromagnetic ratio of 
proton. In fact, e/p ~ 658.

 Electron imaging needs to deal with huge 
energy deposited into human body through 
microwave spectrum. It’s a hardware 
challenge as well.



Other nuclei imaging
 The net spin or angular momentum of the 

nucleus has to be non-zero for imaging. 
That is, the net spin from protons and 
neutrons in a given nucleus has to be non-
zero. 

 For example, we can’t image 16O or 12C but 
we can image 14N (because it has 7 
protons and 7 neutrons).

 Although all  are about the same order of 
magnitude, the abundance of proton is 
much more than that of any other nucleus 
in the human body. See Table 2.1.



Equation of motion: simple 
Bloch equation

 From N =  x B, N = dJ/dt, and  = J, 
one can easily show d/dt =  x B

 This equation indicates that the magnitude 
of  (||) is a constant



fig from Haacke et al (1999)

Spin motion: Bloch equation

 Clockwise precession: 
d =  x B dt

 The Larmor frequency
 = B

 phase–t
 For a proton,
gyromagnetic ratio   
= 42.58 MHz/T



Solution to the eq. of motion
 d/dt =  x B
 When B = B0 z, the solution is z(t) = z(0),
x(t)  = x(0) cos(0t) + y(0) sin(0t),
y(t)  = y(0) cos(0t) – x(0) sin(0t)
 Solve the equation in complex representation: 

Let +(t)  ª x(t) + i y(t), then
d+/dt = –i 0 + => +(t) = +(0) e-it

 So the phase (phase)  –0t



Ch. 3
 Equation of motion in the rotating frame

(d/dt)’ =  x Beff
 Rotating frame vs lab frame
 Effective field

Beff =  B + / + B1
 On-resonance behavior
 RF transmit coil



Rotating frame
 Why discuss this? Need a rotating RF field!
 (d/dt) = (d/dt)’ +  x  => Beff =  B + /
 Explain viewing difference between rotating 

and lab frames



Rotating frame for an RF field
 The RF field is the so-called B1 field.
 It’s called the transmit RF field in MRI.
 If the RF field is a constant field, a spin will 

only precess around the vector sum of the B0
and B1 fields. It does not help us in MR in 
obtaining the signal (images).

 Thus, it is natural to have a rotating RF field.
 When the RF field rotates at the Larmor 

frequency, i.e., B0, it is called “on-
resonance.” Otherwise, it is called “off-
resonance.” 



Linear and quadrature B1

 Linearly polarized B1 field = b1 cos(t) x in
the lab frame 

 With x = x’ cos(t) + y’ sin(t) and 
y = –x’ sin(t) + y’ cos(t)

 b1 cos(t) x = 
b1 ((1+cos(2t)) x’ + sin(2t) y’)/2 in the 
rotating frame.

 When the field is averaged over time, only 
half of the amplitude (b1 /2) is available in the 
rotating frame.



Linear and quadrature B1 (continue)

 The quadrature B1 field is 
b1 x’ = x cos(t) - y sin(t)
resting in the rotating frame and it is obvious 
that its full amplitude is available in the 
rotating frame.

 Thus, with given RF power, the quadrature 
field is more efficient than the linear field.



Resonance condition
 (d/dt)’ =  x Beff 
 Beff =  B0 + / + B1 = [(0 – )z’+1x’]/
 When 0 = , i.e., on-resonance condition, 
Beff = B1 x’ = 1 x’

 If B1 is a constant and the rf pulse is applied 
for a period of time , the flip angle  = B1, 
However, B1 usually depends on time, so the 
general solution of the flip angle is 
 = ∫ B1 dt

 The position of the spin can be found from 
solving the Bloch equation. Sec. 3.3.2 
provides a simple case (which is solved by 
rotational matrices).



Laboratory vs rotational frame

x

B0 // z

 Tip the spin in order to 
detect an MR signal. 

 Let the rf field (CP) 
rotate at the same 
Larmor frequency as 
the spin precesses 
around B0.

 In the rotational 
(primed) frame, the 
spin simply rotates 
around the x’ axis.

B1 // x’

1



Effective left-circularly polarized field
 x’ ª xleft = x cos(t) – y sin(t)
 xright ª x cos(t) + y sin(t)

= x’ cos(2t) + y’ sin(2t)
 This means that the right-circularly 

polarized field is completely ineffective, as 
its time average is zero.



Off resonance condition
 Beff = [(0 – )z’ + 1x’]/
 Off-resonance: 0 ∫ 
 eff = [(0 – )2 + 1

2]1/2

 Eq. 3.54 can be derived in 
an easier fashion rather 
than the given hint.


