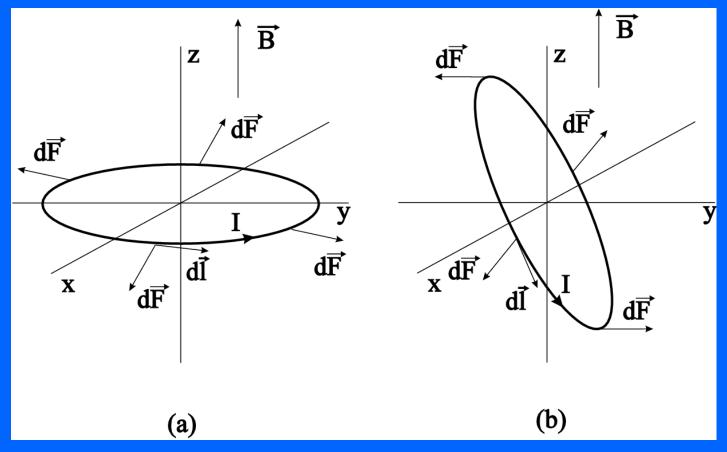
Ch. 2

- Equation of motion: $d\mu/dt = \gamma \mu \times B$ This is the simplest version of the Bloch equation.
- Phase: $\phi = -\omega t$
- Larmor equation: $\omega = \gamma B$
- Complex notation: $\mu_+(t) = \mu_+(0) \exp(-i\omega t)$
- Precession
- Gyromagnetic ratio: $\gamma/2\pi = 42.58$ MHz/T

Magnetic force



 $dF = I dI \times B$

Total force on a closed loop is zero:

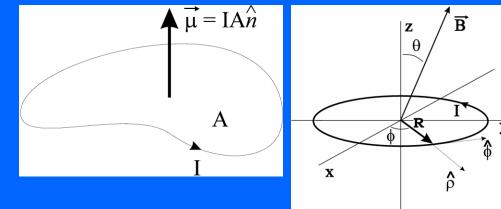
 $\int d\mathbf{F} = \int \mathbf{I} \, d\mathbf{I} \times \mathbf{B} = -\mathbf{I} \, \mathbf{B} \times \int d\mathbf{I} = 0$

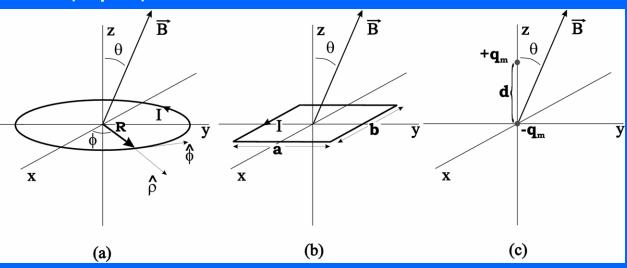
Torque and rotation

- Even if the net force on a loop is zero, the loop may still rotate.
- Whether a loop will rotate depends on the torque on the loop.
- The torque is defined by $dN = r \times dF$
- In the previous cases, the net torque of the left loop is zero so the loop will not rotate. However, the right loop has a non zero torque.

Torque and magnetic moment

- $N = \int dN = \int r \times dF = \int r \times (I \ dI \times B) = \int (B \cdot r) \ I \ dI \int I \ B \ (r \cdot dI) = \mu \times B \ (use \ Stoke's \ theorem \ and \ consider \ spatially \ independent \ I \ and \ B)$
- Where μ is the magnetic moment of the current loop and $\mu = I$ $A = I \int dS$
- A circular loop example (a): $\mathbf{B} = \mathbf{B}(\mathbf{z} \cos\theta + \mathbf{y} \sin\theta)$ $\rho = \mathbf{x} \cos\phi + \mathbf{y} \sin\phi, \phi = -\mathbf{x} \sin\phi + \mathbf{y} \cos\phi =>$ $d\mathbf{N} = \mathbf{I}\mathbf{B}\mathbf{R}^2 \sin\theta \sin\phi \phi d\phi \text{ and } \mathbf{N} = -\mathbf{I}\pi\mathbf{B}\mathbf{R}^2 \sin\theta \mathbf{x}$





Torque and angular momentum

- Angular momentum $J = r \times p = r \times (mv)$
- $dJ/dt = dr/dt \times mv + r \times dp/dt = 0 + r \times F$ = N (torque) ... problem 2.3
- Experiments show $\mu = \gamma J$ and gyromagnetic ratio for proton is $\gamma = 2.67522 *10^8$ rad/s/T.
- Famous gamma bar is defined as $\gamma/2\pi = 42.58$ MHz/T.
- Homework problem 2.4 leads to a result from classical physics: $\gamma = q/(2m)$, where q is the particle charge and m is its mass.

Electron imaging

- m_p/m_e ~ 1836. It implies the gyromagnetic ratio of electron is on the order of 1000 times larger than the gyromagnetic ratio of proton. In fact, γ_e/γ_p ~ 658.
- Electron imaging needs to deal with huge energy deposited into human body through microwave spectrum. It's a hardware challenge as well.

Other nuclei imaging

- The net spin or angular momentum of the nucleus has to be non-zero for imaging. That is, the net spin from protons and neutrons in a given nucleus has to be nonzero.
- For example, we can't image ¹⁶O or ¹²C but we can image ¹⁴N (because it has 7 protons and 7 neutrons).
- Although all γ are about the same order of magnitude, the abundance of proton is much more than that of any other nucleus in the human body. See Table 2.1.

Equation of motion: simple Bloch equation

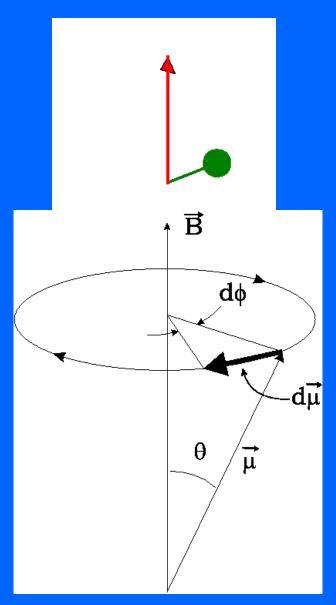
- From $\mathbf{N} = \mathbf{\mu} \times \mathbf{B}$, $\mathbf{N} = d\mathbf{J}/dt$, and $\mathbf{\mu} = \gamma \mathbf{J}$, one can easily show $d\mathbf{\mu}/dt = \gamma \mathbf{\mu} \times \mathbf{B}$
- This equation indicates that the magnitude of μ ($|\mu|$) is a constant

Spin motion: Bloch equation

- Clockwise precession: $d\mu = \gamma \mu \times \mathbf{B} dt$
- The Larmor frequency

$$\omega_0 = \gamma B$$

- ϕ (phase) = $-\omega t$
- For a proton, $\gamma = \text{gyromagnetic ratio}$
 - $= 2\pi \cdot 42.58 \text{ MHz/T}$



Solution to the eq. of motion

- $\mathbf{d}\mu/\mathrm{d}t = \gamma\mu \times \mathbf{B}$
- When $\mathbf{B} = \mathbf{B}_0 \mathbf{z}$, the solution is $\mu_z(t) = \mu_z(0)$,

$$\mu_{x}(t) = \mu_{x}(0) \cos(\omega_{0}t) + \mu_{y}(0) \sin(\omega_{0}t),$$

$$\mu_{v}(t) = \mu_{v}(0) \cos(\omega_{0}t) - \mu_{x}(0) \sin(\omega_{0}t)$$

■ Solve the equation in complex representation: Let $\mu_+(t)$ ¼ $\mu_x(t)$ + i $\mu_y(t)$, then

$$d\mu_{+}/dt = -i \omega_{0} \mu_{+} => \mu_{+}(t) = \mu_{+}(0) e^{-i\omega_{0}t}$$

■ So the phase ϕ (phase) = $-\omega_0 t$

Ch. 3

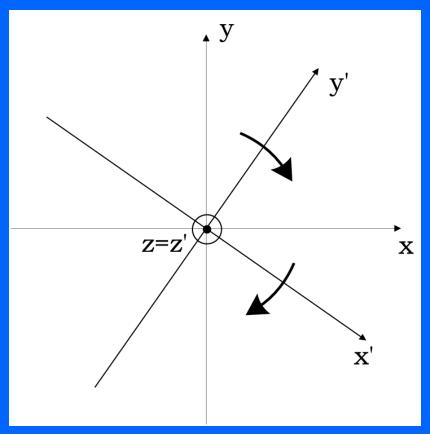
- Equation of motion in the rotating frame $(d\mu/dt)' = \gamma \mu \times B_{eff}$
- Rotating frame vs lab frame
- Effective field

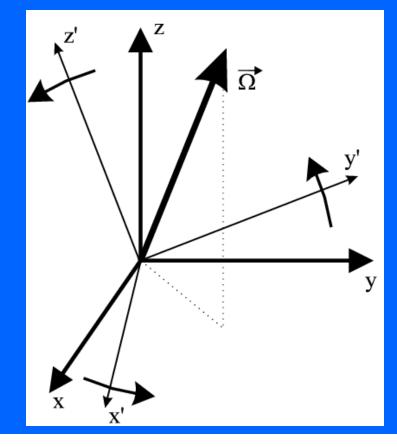
$$\mathbf{B}_{\text{eff}} = \mathbf{B} + \Omega/\gamma + \mathbf{B}_1$$

- On-resonance behavior
- RF transmit coil

Rotating frame

- Why discuss this? Need a rotating RF field!
- Explain viewing difference between rotating and lab frames





Rotating frame for an RF field

- The RF field is the so-called B₁ field.
- It's called the transmit RF field in MRI.
- If the RF field is a constant field, a spin will only precess around the vector sum of the B₀ and B₁ fields. It does not help us in MR in obtaining the signal (images).
- Thus, it is natural to have a rotating RF field.
- When the RF field rotates at the Larmor frequency, i.e., γB₀, it is called "onresonance." Otherwise, it is called "offresonance."

Linear and quadrature B₁

- Linearly polarized B₁ field = b₁ cos(ωt) x in the lab frame
- With $\mathbf{x} = \mathbf{x}' \cos(\omega t) + \mathbf{y}' \sin(\omega t)$ and $\mathbf{y} = -\mathbf{x}' \sin(\omega t) + \mathbf{y}' \cos(\omega t)$
- $b_1 \cos(\omega t) \mathbf{x} =$ $b_1 ((1+\cos(2\omega t)) \mathbf{x}' + \sin(2\omega t) \mathbf{y}')/2$ in the rotating frame.
- When the field is averaged over time, only half of the amplitude (b₁ /2) is available in the rotating frame.

Linear and quadrature B₁ (continue)

- The quadrature B_1 field is $b_1 \mathbf{x}' = \mathbf{x} \cos(\omega t) \mathbf{y} \sin(\omega t)$ resting in the rotating frame and it is obvious that its full amplitude is available in the rotating frame.
- Thus, with given RF power, the quadrature field is more efficient than the linear field.

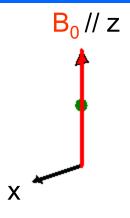
Resonance condition

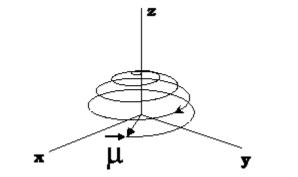
- $(d\mu/dt)' = \gamma \mu \times \mathbf{B}_{\text{eff}}$
- $\mathbf{B}_{\text{eff}} = \mathbf{B}_0 + \Omega/\gamma + \mathbf{B}_1 = [(\omega_0 \omega)\mathbf{z}' + \omega_1\mathbf{x}']/\gamma$
- When $\omega_0 = \omega$, i.e., on-resonance condition, $\gamma \mathbf{B}_{\text{eff}} = \gamma \mathbf{B}_1 \mathbf{x'} = \omega_1 \mathbf{x'}$
- If B_1 is a constant and the rf pulse is applied for a period of time τ , the flip angle $\theta = \gamma B_1 \tau$, However, B_1 usually depends on time, so the general solution of the flip angle is

$$\theta = \gamma \int B_1 dt$$

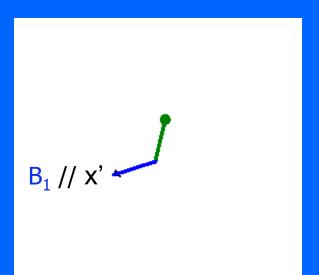
The position of the spin can be found from solving the Bloch equation. Sec. 3.3.2 provides a simple case (which is solved by rotational matrices).

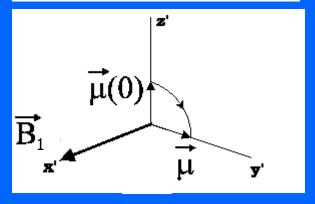
Laboratory vs rotational frame





- Tip the spin in order to detect an MR signal.
- Let the rf field (CP)
 rotate at the same
 Larmor frequency as
 the spin precesses
 around B₀.
- In the rotational (primed) frame, the spin simply rotates around the x' axis.





Effective left-circularly polarized field

- $\mathbf{x}' \frac{1}{4} \mathbf{x}^{\text{left}} = \mathbf{x} \cos(\omega t) \mathbf{y} \sin(\omega t)$
- $= \mathbf{x}^{\text{right}} \frac{1}{4} \mathbf{x} \cos(\omega t) + \mathbf{y} \sin(\omega t)$ $= \mathbf{x}' \cos(2\omega t) + \mathbf{y}' \sin(2\omega t)$
- This means that the right-circularly polarized field is completely ineffective, as its time average is zero.

Off resonance condition

- $\mathbf{B}_{\text{eff}} = [(\omega_0 \omega)\mathbf{z}' + \omega_1\mathbf{x}']/\gamma$
- Off-resonance: ω₀ û ω
- $\omega_{\text{eff}} = [(\omega_0 \omega)^2 + \omega_1^2]^{1/2}$
- Eq. 3.54 can be derived in an easier fashion rather than the given hint.

