
Ch. 4
 Magnetization M
 Bloch equations of motion: dM/dt = M x B
 Potential energy of magnetic moment: 

E = –· B
 T1 recovery: 

Mz(t0) e-(t-t0)/T1 + M0 (1– e-(t-t0)/T1)
 Longitudinal (spin lattice) relaxation time T1
 Transverse (spin-spin) relaxation time T2
 Dephasing



Magnetization

 Magnetization M is the sum of magnetic 
moments per unit volume: M = (Σ )/V

 In most chapters of the MRI textbook, the 
magnetization is from protons.

 d/dt =  x B becomes dM/dt = M x B
 When B = B0 z, the Bloch equation 

becomes: dMz/dt = 0 and dM^/dt = M^ x B



Potential energy
 Potential energy of one spin: E = –· B
 This equation implies that a magnetic 

moment will tend to align itself to the 
magnetic field in order to achieve minimum 
energy.

 Potential energy of spins per given volume: 
Energy density U = –M · B

 Curie’s law: 
equilibrium magnetization M0 = C (B/T) or
M0 ∂ 1/T, where T is the temperature.



T1 relaxation
 A magnetic moment tends to be parallel to a 

magnetic field (in order to minimize the energy). 
Such an interaction is the spin lattice interaction. 
The (recovery or growth) rate is 1/T1, where T1
is the experimental relaxation time: 
dMz/dt = (M0 – Mz)/T1 (when B // z)

 Solution: Mz(t) = Mz(t0) e-(t-t0)/T1 + M0 (1– e-(t-t0)/T1)



Spin-spin interaction
 Due to the magnetic field produced by each 

spin, the spin-spin interaction is related to local, 
random, and time-dependent field variations. 
Such a microscopic interaction leads to a 
macroscopic T2 decay.



T2 decay
 dM^/dt = M^ x B – M^/T2
 (dM^/dt)’ = – M^/T2  => M^(t) = M^(t0) e-(t-

t0)/T2

MR signal,  B0

// B0

T2 decay T2 decay and T1 regrow



T1 and T2 of some tissues

Tissue T1 (ms) T2 (ms)
gray matter (GM) 950 100

white matter (WM) 600 80
muscle 900 50

cerebrospinal fluid 
(CSF) 4500 2200

fat 250 60

blood 1200 100-200



T2’ and T2
*

 External magnetic fields can cause extra 
dephasing of spins. This leads to T2’ decay.

 The T2’ decay can be recovered by the spin 
echo sequence (more in Ch. 8).

 The “total T2” is now called T2*, which can be 
calculated from 1/T2* = 1/T2’ + 1/T2 

 The reason we add the inverse of relaxation 
times is due to the form of the Bloch equation.

 Note that “relaxation rates” are defined as:
R2 = 1/T2, R2’ = 1/T2’, and R2* = 1/T2*



Static field solutions
 The complete Bloch equation is:

dM/dt = M x Beff + (M0 – Mz)/T1 z – M^/T2
 Consider B = B0 z
 dMz/dt = (M0 – Mz)/T1
 dMx/dt = 0My – Mx/T2
 dMy/dt = –0Mx – My/T2
 The solutions are: 
 Mx(t) = e-t/T2 (Mx(0) cos(0t) + My(0) sin(0t) )
 My(t) = e-t/T2 (My(0) cos(0t) – Mx(0) sin(0t) )
 Mz(t) = Mz(0) e-t/T1 + M0 (1 – e-t/T1)



Static field solutions: continue

 The x and y components of the solutions can 
be expressed together by a complex number:

 M+(t) ª Mx(t) + i My(t) = e-i0t-t/T2 M+(0)
 or M+(t) = |M+(t)| ei(t) = M^(t) ei(t) 

where M^(t) = e-t/T2 M^(0) 
and (t) = –0t + (0)

 These notations are commonly used in MRI.



Static and rf fields in the Bloch eq.
 (dMz/dt)’ = –1My’ + (M0 – Mz)/T1
 (dMx’/dt)’ = My’ – Mx’/T2
 (dMy’/dt)’ = –Mx’ + 1Mz – My’/T2
  ª 0 – 
 For constant , 1, T1, and T2, the solutions of 

the Bloch equation can be solved analytically.
 Here in this chapter we are only interested in 

two special cases:
1. Short-lived rf pulse (with 1 = 0 or no 
relaxation terms)
2. Long-lived rf pulse (derivatives =0)



Ch. 5
 Stern and Gerlach experiment
 Zeeman splitting for spin ½ particles
 Transition energy containing the Larmor 

frequency
 Force on a magnetic moment



Stern and Gerlach experiment
 Neutral silver atom 

(47Ag) through a 
magnetic field

 = J for electron
 Jz = m(h/2)
 J2 = j(j+1) (h/2)2

j = 0, 1, … or 1/2, 
3/2, …



Zeeman effect
 When an external magnetic field is applied, 

the atomic or nuclear energy levels are split.
 Spins parallel to the field are at the lower 

energy level, –(h/2)0/2.
 Spins anti-parallel to the field are at the higher 

energy level, +(h/2)0/2.
 The frequency 0 is the famous Larmor 

frequency.



Transition energy

 Transition energy is the released energy for a 
spin jumping from the higher energy level to 
the lower energy level. 

 This transition energy is (h/2)0 where 
Larmor frequency 0 = B.



Force on a magnetic moment
 Recall potential energy: E = – · B
 Force F = –E = ( · B)
 Usually  is not a function of space but 

magnetization M(r) is!
 For example, Fz = z ∑Bz/∑z ª zGz
 In MRI, “gradient fields” are usually referred as 

the derivatives of the Bz component with respect 
to the spatial direction, i.e., x-gradient is Gx ª
∑Bz/∑x, y-gradient is Gy ª ∑Bz/∑y, and z-gradient 
is Gz ª ∑Bz/∑z. 



Ch. 6
 Curie’s law and magnetization for protons:  

M ~ 2(h/2)2B/(4kT)
 Spin excess
 Thermal energy



Curie’s law and magnetization
 Boltzmann distribution: Probability = e-/kT/Z 

where Z = Σ e-/kT

 Magnetization =  Σ (Prob) z where z = 
m(h/2),  = –m(h/2), and  = N/V

 Because |/kT| << 1, magnetization ~ 
s(s+1)2(h/2)2B/(3kT)

 For proton, the magnetization ~ 
2(h/2)2B/(4kT)

 Curie’s law: magnetization ∂ 1/T



Spin excess
 Spin excess N = difference between the 

number of spins parallel to and number of 
spins anti-parallel to the external field.

 N ª N(Æ) – N(∞) ~ Nu/2 where 
u = (h/2)/(kT)


