Ch. 4

- Magnetization M
- Bloch equations of motion: $dM/dt = \gamma M \times B$
- Potential energy of magnetic moment:

$$E = -\mu \cdot \mathbf{B}$$

T₁ recovery:

$$M_z(t_0) e^{-(t-t_0)/T_1} + M_0 (1 - e^{-(t-t_0)/T_1})$$

- Longitudinal (spin lattice) relaxation time T₁
- Transverse (spin-spin) relaxation time T₂
- Dephasing

Magnetization

- Magnetization **M** is the sum of magnetic moments per unit volume: $\mathbf{M} = (\Sigma \mu)/V$
- In most chapters of the MRI textbook, the magnetization is from protons.
- $d\mu/dt = \gamma \mu \times B$ becomes $dM/dt = \gamma M \times B$
- When $\mathbf{B} = \mathbf{B}_0 \mathbf{z}$, the Bloch equation becomes: $d\mathbf{M}_z/dt = 0$ and $d\mathbf{M}_a/dt = \gamma \mathbf{M}_a \times \mathbf{B}$

Potential energy

- Potential energy of one spin: $E = -\mu \cdot B$
- This equation implies that a magnetic moment will tend to align itself to the magnetic field in order to achieve minimum energy.
- Potential energy of spins per given volume: Energy density U = -M · B
- Curie's law:

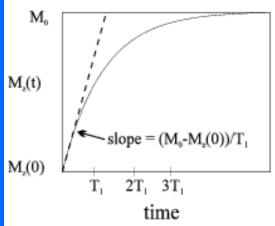
equilibrium magnetization $\mathbf{M}_0 = \mathbf{C} (\mathbf{B}/\mathbf{T})$ or $\mathbf{M}_0 \le 1/\mathbf{T}$, where T is the temperature.

T₁ relaxation

A magnetic moment tends to be parallel to a magnetic field (in order to minimize the energy).
Such an interaction is the spin lattice interaction.
The (recovery or growth) rate is 1/T₁, where T₁ is the experimental relaxation time:

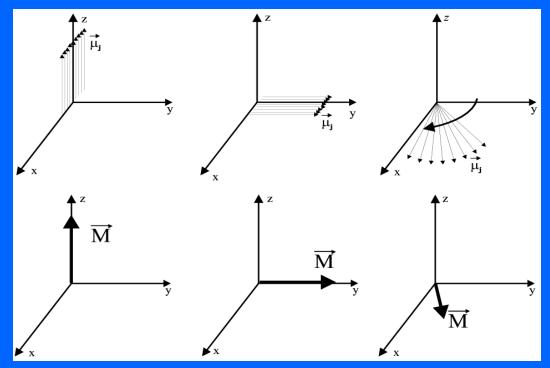
 $dM_z/dt = (M_0 - M_z)/T_1$ (when **B** // **z**)

■ Solution: $M_z(t) = M_z(t_0) e^{-(t-t_0)/T_1} + M_0 (1 - e^{-(t-t_0)/T_1})$



Spin-spin interaction

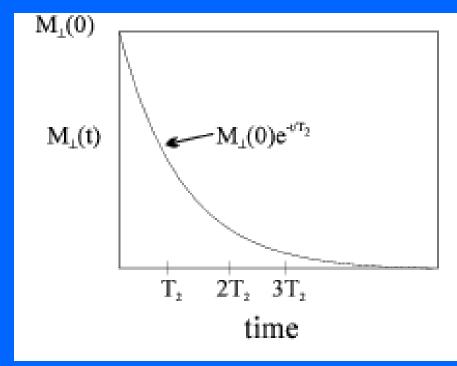
Due to the magnetic field produced by each spin, the spin-spin interaction is related to local, random, and time-dependent field variations.
Such a microscopic interaction leads to a macroscopic T₂ decay.



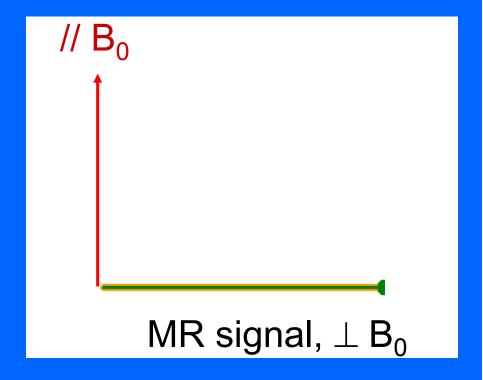
T₂ decay

- $(dM_a/dt)' = -M_a/T_2 = > M_a(t) = M_a(t_0) e^{-(t_0)/T_2}$

T₂ decay



T₂ decay and T₁ regrow



T₁ and T₂ of some tissues

Tissue	T ₁ (ms)	T ₂ (ms)
gray matter (GM)	950	100
white matter (WM)	600	80
muscle	900	50
cerebrospinal fluid (CSF)	4500	2200
fat	250	60
blood	1200	100-200

T_2 and T_2 *

- External magnetic fields can cause extra dephasing of spins. This leads to T₂' decay.
- The T₂' decay can be recovered by the spin echo sequence (more in Ch. 8).
- The "total T_2 " is now called T_2^* , which can be calculated from $1/T_2^* = 1/T_2' + 1/T_2$
- The reason we add the inverse of relaxation times is due to the form of the Bloch equation.
- Note that "relaxation rates" are defined as:

$$R_2 = 1/T_2$$
, $R_2' = 1/T_2'$, and $R_2^* = 1/T_2^*$

Static field solutions

The complete Bloch equation is:

$$d\mathbf{M}/dt = \gamma \mathbf{M} \times \mathbf{B}_{eff} + (\mathbf{M}_0 - \mathbf{M}_z)/\mathbf{T}_1 \mathbf{z} - \mathbf{M}_a/\mathbf{T}_2$$

- Consider $\mathbf{B} = \mathbf{B}_0 \mathbf{z}$
- $dM_z/dt = (M_0 M_z)/T_1$
- $dM_x/dt = \omega_0 M_y M_x/T_2$
- $dM_y/dt = -\omega_0 M_x M_y/T_2$
- The solutions are:
- $M_{x}(t) = e^{-t/T_{2}} (M_{x}(0) \cos(\omega_{0}t) + M_{y}(0) \sin(\omega_{0}t))$
- $M_z(t) = M_z(0) e^{-t/T_1} + M_0 (1 e^{-t/T_1})$

Static field solutions: continue

- The x and y components of the solutions can be expressed together by a complex number:
- or $M_+(t) = |M_+(t)| e^{i\phi(t)} = M_a(t) e^{i\phi(t)}$ where $M_a(t) = e^{-t/T_2} M_a(0)$ and $\phi(t) = -\omega_0 t + \phi(0)$
- These notations are commonly used in MRI.

Static and rf fields in the Bloch eq.

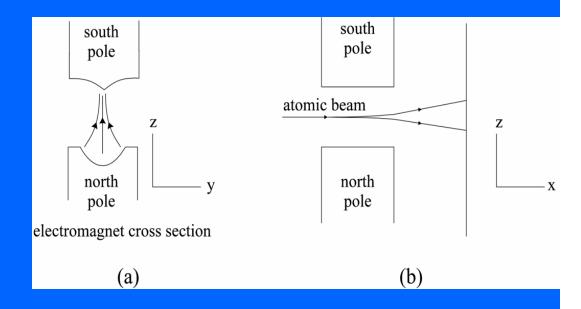
- $(dM_z/dt)' = -\omega_1 M_{y'} + (M_0 M_z)/T_1$
- $(dM_{x'}/dt)' = \Delta\omega M_{y'} M_{x'}/T_2$
- $(dM_{y'}/dt)' = -\Delta\omega M_{x'} + \omega_1 M_z M_{y'}/T_2$
- $\blacksquare \Delta \omega \frac{1}{4} \omega_0 \omega$
- For constant $\Delta\omega$, ω_1 , T_1 , and T_2 , the solutions of the Bloch equation can be solved analytically.
- Here in this chapter we are only interested in two special cases:
 - 1. Short-lived rf pulse (with $\omega_1 = 0$ or no relaxation terms)
 - 2. Long-lived rf pulse (derivatives =0)

Ch. 5

- Stern and Gerlach experiment
- Zeeman splitting for spin ½ particles
- Transition energy containing the Larmor frequency
- Force on a magnetic moment

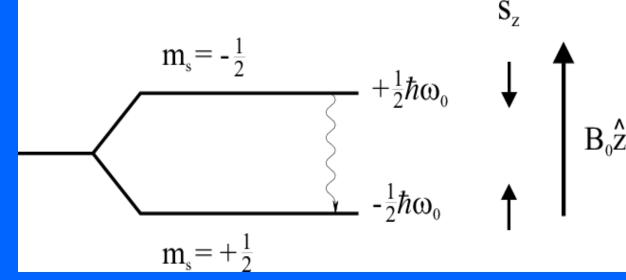
Stern and Gerlach experiment

- Neutral silver atom (⁴⁷Ag) through a magnetic field
- $\mathbf{\mu} = \mathbf{\mu} = \mathbf{\gamma} \mathbf{J}$ for electron
- $J_7 = m(h/2\pi)$
- J² = j(j+1) (h/2π)² j = 0, 1, ... or 1/2, 3/2, ...



Zeeman effect

- When an external magnetic field is applied, the atomic or nuclear energy levels are split.
- Spins parallel to the field are at the lower energy level, $-(h/2\pi)\omega_0/2$.
- Spins anti-parallel to the field are at the higher energy level, $+(h/2\pi)\omega_0/2$.
- The frequency ω_0 is the famous Larmor frequency.



Transition energy

- Transition energy is the released energy for a spin jumping from the higher energy level to the lower energy level.
- This transition energy is $(h/2\pi)\omega_0$ where Larmor frequency $\omega_0 = \gamma B$.

Force on a magnetic moment

- Recall potential energy: E = -µ · B
- Force $\mathbf{F} = -\nabla \mathbf{E} = \nabla (\mathbf{\mu} \cdot \mathbf{B})$
- Usually µ is not a function of space but magnetization M(r) is!
- For example, $F_z = \mu_z \ddot{o}B_z / \ddot{o}z \frac{1}{4} \mu_z G_z$
- In MRI, "gradient fields" are usually referred as the derivatives of the B_z component with respect to the spatial direction, i.e., x-gradient is $G_x \frac{1}{4}$ $\ddot{o}B_z/\ddot{o}x$, y-gradient is $G_y \frac{1}{4} \ddot{o}B_z/\ddot{o}y$, and z-gradient is $G_z \frac{1}{4} \ddot{o}B_z/\ddot{o}z$.

Ch. 6

- Curie's law and magnetization for protons: $\mathbf{M} \sim \rho \gamma^2 (h/2\pi)^2 \mathbf{B}/(4kT)$
- Spin excess
- Thermal energy

Curie's law and magnetization

- Boltzmann distribution: Probability = $e^{-\epsilon/kT}/Z$ where $Z = \sum e^{-\epsilon/kT}$
- Magnetization = $\rho \Sigma$ (Prob) μ_z where $\mu_z = m_{\gamma}(h/2\pi)$, $\epsilon = -m_{\omega}(h/2\pi)$, and $\rho = N/V$
- Because $|\varepsilon/kT|$ << 1, magnetization ~ $\rho s(s+1)\gamma^2(h/2\pi)^2B/(3kT)$
- For proton, the magnetization $\sim \rho \gamma^2 (h/2\pi)^2 B/(4kT)$
- Curie's law: magnetization ó 1/T

Spin excess

- Spin excess △N = difference between the number of spins parallel to and number of spins anti-parallel to the external field.
- $\Delta N \frac{1}{4} N(1) N(\emptyset) \sim Nu/2$ where $u = (h/2\pi)\omega_0/(kT)$