Ch. 4

Magnetization M

Bloch equations of motion: dM/dt = yM x B
Potential energy of magnetic moment:
E=—-B

T, recovery:

M., (t,) e-(t-t)/T, 4 M, (1— e-(tt)/T)
Longitudinal (spin lattice) relaxation time T,

Transverse (spin-spin) relaxation time T,
Dephasing




Magnetization

Magnetization M Is the sum of magnetic
moments per unit volume: M = (£ p)/V

In most chapters of the MRI textbook, the
magnetization is from protons.

du/dt = yu x B becomes dM/dt = yM x B

When B = B, z, the Bloch equation
becomes: dI\/I Jdt =0 and dM_/dt = yM_ x B




Potential energy

Potential energy of one spin: E =—u - B

This equation implies that a magnetic
moment will tend to align itself to the
magnetic field in order to achieve minimum
energy.

Potential energy of spins per given volume:
Energy density U =—M - B

Curie’s law:

equilibrium magnetization M, = C (B/T) or
M, 6 1/T, where T Is the temperature.




T, relaxation

A magnetic moment tends to be parallel to a
magnetic field (in order to minimize the energy).
Such an interaction Is the spin lattice interaction.
The (recovery or growth) rate is 1/T,, where T,
IS the experimental relaxation time:

dM./dt = (My—M,)/T, (when B // z)
Solution: M,(t) = M,(t,) e /T + M, (1— e (tk)/T.)

;
f . .
/= slope = (M,-M,(0))'T,




Spin-spin interaction
Due to the magnetic field produced by each
spin, the spin-spin interaction is related to local,
random, and time-dependent field variations.
Such a microscopic interaction leads to a
macroscopic T, decay.




T, decay
dM_/dt = yM_ x B — M_/T,

(dMa/dt)’ = — |\/|a/-|_2 => I\/Ia(t) p— Ma(to) e-(t-
t,)/T,

T, decay T, decay and T, regrow

—

MR signal, 1 B,




T, and T, of some tissues

Tissue T, (ms) T, (Ms)
gray matter (GM) 950 100
white matter (WM)| 600 80

muscle 900 50

cerebrospinal fluid
(CSF)

fat 250 60

4500

blood 1200 100-200




T, and T,”

External magnetic fields can cause extra
dephasing of spins. This leads to T,’ decay.

The T, decay can be recovered by the spin
echo sequence (more in Ch. 8).

The “total T,” Is now called T,*, which can be
calculated from 1/T,* = 1/T, + 1/T,

The reason we add the inverse of relaxation
times Is due to the form of the Bloch equation.

Note that “relaxation rates” are defined as:
R, =1/T,, R,’ = 1/T,, and R,* = 1/T,*




Static field solutions
The complete Bloch equation Is:
dM/dt = yM x B4 + (Mg—M)/T,z - M_/T,
Consider B = B, z
dM./dt = (My—M_)/T,

dM,/dt = wgM, — M,/T,
dM,/dt = —o M, —M,/T,
The solutions are:

M,(t) = eT: (M(0) cos(emgt) + M,(0) sin(wt) )
M, (t) = eT: (M, (0) cos(mgt) —M,(0) sin(wot) )
M,(t) = M,(0) eV + M, (1 — eV'T)




Static field solutions: continue

The x and y components of the solutions can
be expressed together by a complex number:

M. (1) % M, (1) + i M(t) = e*ttT: M, (0)
or M_(t) = |[M, (t)] e® = M_(t) elo®

where M_(t) = e'¥™: M_(0)
and ¢(t) = —ogt + ¢(0)
These notations are commonly used in MRI.




Static and rf fields in the Bloch eq.
(dM,/dt)’ = —o,M,, + (My—M,)/T,

(dM,/dt)’ = Aw M, — M,./T,

(dM,/dt)’ = -Aw M, + oM, —M,/T,

A® % ®y—®

For constant Aw, ®,, T;, and T, the solutions of

the Bloch equation can be solved analytically.

Here In this chapter we are only interested In
two special cases:

1. Short-lived rf pulse (with @, = 0 or no
relaxation terms)

2. Long-lived rf pulse (derivatives =0)




Ch. 5

Stern and Gerlach experiment
Zeeman splitting for spin 2 particles

Transition energy containing the Larmor
frequency

Force on a magnetic moment




Stern and Gerlach experiment

Neutral silver atom
(4’Ag) through a
magnetic field

u = vyJ for electron
J, = m(h/2n)

J2 = j(j+1) (h/27)?
]=0,1,..0r1/2,
3/2, ..




Zeeman effect

When an external magnetic field is applied,
the atomic or nuclear energy levels are split.

Spins parallel to the field are at the lower
energy level, —(h/2n)w,/2.

Spins anti-parallel to the field are at the higher
energy level, +(h/2n)wy/2.

The frequency o, Is the famous Larmor
frequency.




Transition energy

Transition energy is the released energy for a
spin jumping from the higher energy level to
the lower energy level.

This transition energy Is (h/2rn)w, where
Larmor frequency o, = yB.




Force on a magnetic moment

Recall potential energy: E=—u - B

~orce F = —-VE = V(u - B)

Usually p Is not a function of space but
magnetization M(r) Is!

For example, F, = u, OB,/0z % .G,

In MRI, “gradient fields” are usually referred as
the derivatives of the B, component with respect
to the spatial direction, I.e., x-gradient is G, %4

OB, /0X, y-gradient is G, % OB /Oy, and z- gradlent
IS G 14 OB,/Cxz.




Ch. 6

Curie’s law and magnetization for protons:
M ~ py4(h/2n)°B/(4KT)

Spin excess
Thermal energy




Curie’s law and magnetization

Boltzmann distribution: Probability = e#k7/Z
where Z = X e&/kT

Magnetization = p X (Prob) u, where u, =
my(h/2n), e = —mw(h/2x), and p = N/V
Because |e/kT| << 1, magnetization —
0s(s+1)y?(h/21)?B/(3kT)

~or proton, the magnetization —~
oy?(h/271)?B/(4KT)
Curie’s law: magnetization 6 1/T




Spin excess

Spin excess AN = difference between the
number of spins parallel to and number of
spins anti-parallel to the external field.

AN % N(1) — N(@) — Nu/2 where
u = (h/2n)w,/(kT)




